The quality of potatoes from organic and conventional farming was investigated in this study. Tubers of eight potato varieties, organically and conventionally produced at one or two geographical sites in controlled field trials, were collected in four consecutive harvests from 1996-1999. The parameters analysed included nitrate, trace elements (As, Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb, Se, Zn), vitamin C, potato glycoalkaloids, as well as chlorogenic acid, polyphenol oxidase and rate of tuber enzymic browning. The results indicated lower nitrate content and higher vitamin C and chlorogenic acid content to be the parameters most consistently differentiating organically from conventionally produced potatoes. Elevated concentrations of glycoalkaloids were also observed throughout the experiments in some potato varieties grown in organic farming systems. Principal component analysis (PCA) of the analytical and other data using three PCs confirmed a good separation between the organically and conventionally produced potatoes when studied in single crop years. However, score-plots (objects) and loading-plots (variables) of pooled results from the consecutive harvests showed that between the years' changes and also variety as well as geographical variations are equally or more important factors determining the quality of potatoes than the farming system. Further studies of various marker compounds of potato quality related to the organic or conventional farming systems should be performed before unbiased information can be given to the consumers.
Potato tubers naturally contain a number of defense substances, some of which are of major concern for food safety. Among these substances are the glycoalkaloids and calystegines. We have here analyzed levels of glycoalkaloids (α-chaconine and α-solanine) and calystegines (A₃, B₂, and B₄) in potato tubers subjected to mechanical wounding, light exposure, or elevated temperature: stress treatments that are known or anticipated to induce glycoalkaloid levels. Basal glycoalkaloid levels in tubers varied between potato cultivars. Wounding and light exposure, but not heat, increased tuber glycoalkaloid levels, and the relative response differed among the cultivars. Also, calystegine levels varied between cultivars, with calystegine B4 showing the most marked variation. However, the total calystegine level was not affected by wounding or light exposure. The results demonstrate a strong variation among potato cultivars with regard to postharvest glycoalkaloid increases, and they suggest that the biosynthesis of glycoalkaloids and calystegines occurs independently of each other.
Very little is known about the effects of an organic or conventional diet on animal physiology and health. Here, we report the effect of contrasting crop protection (with or without chemosynthetic pesticides) and fertilization (manure or mineral fertilizers) regimes on feed composition and growth and the physiological parameters of rats. The use of manure instead of mineral fertilizers in feed production resulted in lower concentrations of protein (18.8 vs 20.6%) and cadmium (3.33 vs 4.92 μg/100 g) but higher concentrations of polyphenols (1.46 vs 0.89 g/100 g) in feeds and higher body protein (22.0 vs 21.5%), body ash (3.59 vs 3.51%), white blood cell count (10.86 vs 8.19 × 10³/mm³), plasma glucose (7.23 vs 6.22 mmol/L), leptin (3.56 vs 2.78 ng/mL), insulin-like growth factor 1 (1.87 vs 1.28 μg/mL), corticosterone (247 vs 209 ng/mL), and spontaneous lymphocyte proliferation (11.14 vs 5.03 × 10³ cpm) but lower plasma testosterone (1.07 vs 1.97 ng/mL) and mitogen stimulated proliferation of lymphocytes (182 vs 278 × 10³ cpm) in rats. There were no main effects of crop protection, but a range of significant interactions between fertilization and crop protection occurred.
The rapidly growing demand for organic food requires the availability of analytical tools enabling their authentication. Recently, metabolomic fingerprinting/profiling has been demonstrated as a challenging option for a comprehensive characterisation of small molecules occurring in plants, since their pattern may reflect the impact of various external factors. In a two-year pilot study, concerned with the classification of organic versus conventional crops, ambient mass spectrometry consisting of a direct analysis in real time (DART) ion source and a time-of-flight mass spectrometer (TOFMS) was employed. This novel methodology was tested on 40 tomato and 24 pepper samples grown under specified conditions. To calculate statistical models, the obtained data (mass spectra) were processed by the principal component analysis (PCA) followed by linear discriminant analysis (LDA). The results from the positive ionisation mode enabled better differentiation between organic and conventional samples than the results from the negative mode. In this case, the recognition ability obtained by LDA was 97.5% for tomato and 100% for pepper samples and the prediction abilities were above 80% for both sample sets. The results suggest that the year of production had stronger influence on the metabolomic fingerprints compared with the type of farming (organic versus conventional). In any case, DART-TOFMS is a promising tool for rapid screening of samples. Establishing comprehensive (multi-sample) long-term databases may further help to improve the quality of statistical classification models.
Several alternative approaches applicable for the analysis of furanocoumarins, toxic components occurring in some fruits and vegetables representing both Apiaceae and Rutaceae families, were tested in our study. Limits of detection (LODs) for angelicin, psoralen, bergapten, xanthotoxin, trioxsalen, isopimpinellin, sphondin, pimpinellin and isobergapten obtained by GC/MS (SIM) were in the range 0.01-0.08 µg g −1 . Slightly higher LODs (0.02-0.20 µg g −1 ) were achieved by LC/MS-MS. The latter is the only alternative for analysis of bergamottin (LOD = 0.01 µg g −1 ) in citrus fruits because this furanocoumarin is unstable under GC conditions. Regardless of the determination step used, the repeatability of the measurements (expressed as RSD) did not exceed 10%. As shown in our study the levels of furanocoumarins in celery, celeriac, parsnip, carrot, lemon and other foods obtained at a retail market varied over a wide range; the highest contents were determined in parsnip, while the levels of these toxins in carrots and citrus pulps were relatively low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.