In Gram-negative bacteria, TEM-1 -lactamase provides the major mechanism of plasmid-mediated -lactam resistance. Natural variants of TEM-1 with increased antibiotic resistance have appeared in response to the use of extended-spectrum -lactam antibiotics (e.g., ceftazidime) and -lactamase inhibitors (e.g., clavulanic acid). Some of the variant enzymes are more efficient at catalyzing -lactam hydrolysis, whereas others are more resistant to inhibitors. M182T is a substitution observed in both types of variant TEM-1 -lactamases. This mutation is found only in combination with other amino acid substitutions, suggesting that it may correct defects introduced by other mutations that alter the specificity. An engineered core mutation, L76N, which diminishes the periplasmic -lactamase activity by 100-fold, was used as a model to understand the mechanism of suppression of the M182T mutation. Biochemical studies of the L76N enzyme alone and in combination with the M182T mutation indicate that the M182T substitution acts at the level of folding but does not affect the thermodynamic stability of TEM-1 -lactamase. Thus, the M182T substitution is an example of a naturally occurring mutation that has evolved to alter the folding pathway of a protein and confer a selective advantage during the evolution of drug resistance.
Two adjacent aspartates, Asp 295 and Asp 296, playing major roles in the reaction catalyzed by mouse adenosine deaminase (mADA) were altered using site-directed mutagenesis. These mutants were expressed and purified from an ADA-deficient bacterial strain and characterized. Circular dichroism spectroscopy shows the mutants to have unperturbed secondary structure. Their zinc content compares well to that of wild-type enzyme. Changing Asp 295 to a glutamate decreases the kcat but does not alter the Km for adenosine, confirming the importance of this residue in the catalytic process and its minimal role in substrate binding. The crystal structure of the D295E mutant reveals a displacement of the catalytic water from the active site due to the longer glutamate side chain, resulting in the mutant's inability to turn over the substrate. In contrast, Asp 296 mutants exhibit markedly increased Km values, establishing this residue's critical role in substrate binding. The Asp 296->Ala mutation causes a 70-fold increase in the Km for adenosine and retains 0.001% of the wild-type kcat/Km value, whereas the ASP 296->Asn mutant has a 10-fold higher Km and retains 1% of the wild-type kcat/Km value. The structure of the D296A mutant shows that the impaired binding of substrate is caused by the loss of a single hydrogen bond between a carboxylate oxygen and N7 of the purine ring. These results and others discussed below are in agreement with the postulated role of the adjacent aspartates in the catalytic mechanism for mADA.
Protein disulfide isomerase (PDI), a folding catalyst and chaperone can, under certain conditions, facilitate the misfolding and aggregation of its substrates. This behavior, termed antichaperone activity [Puig, A., and Gilbert, H. F., (1994) J. Biol. Chem. 269, 25889] may provide a common mechanism for aggregate formation in the cell, both as a normal consequence of cell function or as a consequence of disease. When diluted from the denaturant, reduced, denatured lysozyme (10-50 microM) remains soluble, although it does aggregate to form an ensemble of species with an average sedimentation coefficient of 23 +/- 5 S (approximately 600 +/- 100 kDa). When low concentrations of PDI (1-5 microM) are present, the majority (80 +/- 8%) of lysozyme molecules precipitate in large, insoluble aggregates, together with 87 +/- 12% of the PDI. PDI-facilitated aggregation occurs even when disulfide formation is precluded by the presence of dithiothreitol (10 mM). Maximal lysozyme-PDI precipitation occurs at a constant lysozyme/PDI ratio of 10:1 over a range of lysozyme concentrations (10-50 microM). Concomitant resolubilization of PDI and lysozyme from these aggregates by increasing concentrations of urea suggests that PDI is an integral component of the mixed aggregate. PDI induces lysozyme aggregation by noncovalently cross-linking 23 S lysozyme species to form aggregates that become so large (approximately 38,000 S) that they are cleared from the analytical ultracentrifuge even at low speed (1500 rpm). The rate of insoluble aggregate formation increases with increasing PDI concentration (although a threshold PDI concentration is observed). However, increasing lysozyme concentration slows the rate of aggregation, presumably by depleting PDI from solution. A simple mechanism is proposed that accounts for these unusual aggregation kinetics as well as the switch between antichaperone and chaperone behavior observed at higher concentrations of PDI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.