The focus of the recent experimental research is to provide control of the combustion dynamics and complex measurements (flame temperature, heat production rate, and composition of polluting emissions) for pelletized wood biomass using a non-uniform magnetic field that produces magnetic force interacting with magnetic moment of paramagnetic oxygen. The experimental results have shown that a gradient magnetic field provides enhanced mixing of the flame compounds by increasing combustion efficiency and enhancing the burnout of volatiles.
Trinitrotoluene (TNT), a commonly used explosive for military and industrial applications, can cause serious environmental pollution. 28-day laboratory pot experiment was carried out applying bioaugmentation using laboratory selected bacterial strains as inoculum, biostimulation with molasses and cabbage leaf extract, and phytoremediation using rye and blue fenugreek to study the effect of these treatments on TNT removal and changes in soil microbial community responsible for contaminant degradation. Chemical analyses revealed significant decreases in TNT concentrations, including reduction of some of the TNT to its amino derivates during the 28-day tests. The combination of bioaugmentation-biostimulation approach coupled with rye cultivation had the most profound effect on TNT degradation. Although plants enhanced the total microbial community abundance, blue fenugreek cultivation did not significantly affect the TNT degradation rate. The results from molecular analyses suggested the survival and elevation of the introduced bacterial strains throughout the experiment. Reference to this paper should be made as follows: Nõ lvak, H.; Truu, J.; Limane, B.; Truu, M.; Cepurnieks, G.; Bartkevičs, V.; Juhanson, J.; Muter, O. 2013. Microbial community changes in TNT spiked soil bioremediation trial using biostimulation, phytoremediation and bioaugmentation, Journal of Environmental Engineering and Landscape Management 21(3): 153Á162. http://dx.abstract. The aim of the recent research is to provide stable, controllable and effective wood pellets combustion with minimum emissions. Two possibilities were chosen, investigated and analysed: wood pellets co-firing with propanebutane mixture and the use of a permanent magnet. The special pilot device was constructed in the laboratory of Heat and Mass Transfer in Institute of Physics. Two types of experiments were conducted: combustion with propane-butane supply (0.9 kW up to 1.27 kW) of wood pellets with different moisture content (W = 8%, 15%, 20% and 25%); combustion of wood pellets with applied magnetic field by using the permanent magnet, an propane-butane supply also was used. The main conclusion of the research is that co-firing and magnetic field can be used as an instrument to provide more effective burnout of volatiles and cleaner heat production.
The focus of the recent experimental research is to analyze the regulation possibilities of biomass combustion. Three possibilities were chosen as part of this research: a) biomass cofiring with propane, b) swirling flow with re-circulation zone, and c) use of a permanent magnet. The aim of the research is to provide stable, controllable and effective biomass combustion with minimum emissions. The special pilot device was created where biomass can be combusted separately and co-fired with propane. Wood pellets were used during the experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.