How do listeners respond to prediction errors within patterned sequence of sounds? To answer this question we carried out a statistical learning study using electroencephalography (EEG). In a continuous auditory stream of sound triplets the deviations were either (a) statistical, in terms of transitional probability, (b) physical, due to a change in sound location (left or right speaker) or (c) a double deviants, i.e. a combination of the two. Statistical and physical deviants elicited a statistical mismatch negativity and a physical MMN respectively. Most importantly, we found that effects of statistical and physical deviants interacted (the statistical MMN was smaller when co-occurring with a physical deviant). Results show, for the first time, that processing of prediction errors due to statistical learning is affected by prediction errors due to physical deviance. Our findings thus show that the statistical MMN interacts with the physical MMN, implying that prediction error processing due to physical sound attributes suppresses processing of learned statistical properties of sounds.
The capability to establish accurate predictions is an integral part of learning. Whether predictions about different dimensions of a stimulus interact with each other, and whether such an interaction affects learning, has remained elusive. We conducted a statistical learning study with EEG (electroencephalography), where a stream of consecutive sound triplets was presented with deviants that were either: (a) statistical, depending on the triplet ending probability, (b) physical, due to a change in sound location or (c) double deviants, i.e. a combination of the two. We manipulated the predictability of stimulus-onset by using random stimulus-onset asynchronies. Temporal unpredictability due to random onsets reduced the neurophysiological responses to statistical and location deviants, as indexed by the statistical mismatch negativity (sMMN) and the location MMN. Our results demonstrate that the predictability of one stimulus attribute influences the processing of prediction error signals of other stimulus attributes, and thus also learning of those attributes.
The human brain extracts statistical regularities from the surrounding environment in a process referred to as statistical learning. Recent behavioural evidence suggests that developmental dyslexia affects statistical learning. However, surprisingly few neurophysiological studies have assessed how developmental dyslexia affects the neural processing underlying statistical learning. In this study, we used electroencephalography to explore the neural correlates of an important aspect of statistical learning, sensitivity to transitional probabilities, in individuals with developmental dyslexia. Adults diagnosed with developmental dyslexia (n = 17) and controls (n = 19) were exposed to a continuous stream of sound triplets in which a few triplet endings were location deviants (i.e., were presented from an unexpected speaker direction) or statistical deviants (i.e., had a low transitional probability given the triplet's first two sounds). Location deviants elicited a large location mismatch negativity (MMN), which was larger in controls than dyslexics. Statistical deviants elicited a small, yet significant statistical MMN (sMMN) in controls, whereas the dyslexic individuals did not exhibit a statistical MMN. These results suggest that the neural mechanisms underlying statistical learning are impaired in developmental dyslexia.
Statistical learning refers to the implicit mechanism of extracting regularities in our environment. Numerous studies have investigated the neural basis of statistical learning. However, how the brain responds to violations of auditory regularities based on prior (implicit) learning requires further investigation. Here, we used functional magnetic resonance imaging (fMRI) to investigate the neural correlates of processing events that are irregular based on learned local dependencies. A stream of consecutive sound triplets was presented. Unbeknown to the subjects, triplets were either (a) standard, namely triplets ending with a high probability sound or, (b) statistical deviants, namely triplets ending with a low probability sound. Participants (n = 33) underwent a learning phase outside the scanner followed by an fMRI session. Processing of statistical deviants activated a set of regions encompassing the superior temporal gyrus bilaterally, the right deep frontal operculum including lateral orbitofrontal cortex, and the right premotor cortex. Our results demonstrate that the violation of local dependencies within a statistical learning paradigm does not only engage sensory processes, but is instead reminiscent of the activation pattern during the processing of local syntactic structures in music and language, reflecting the online adaptations required for predictive coding in the context of statistical learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.