Exfoliation syndrome (XFS) is the commonest known risk factor for secondary glaucoma and a significant cause of blindness worldwide. Variants in two genes, LOXL1 and CACNA1A have been previously associated with XFS. To further elucidate the genetic basis of XFS, we collected a global sample of XFS cases to refine the association at LOXL1, which previously showed inconsistent results between populations, and to identify new variants associated with XFS. We identified a rare, protective allele at LOXL1 (p.407Phe, OR = 25, P =2.9 × 10−14) through deep resequencing of XFS cases and controls from 9 countries. This variant results in increased cellular adhesion strength compared to the wild-type (p.407Tyr) allele. A genome-wide association study (GWAS) of XFS cases and controls from 24 countries followed by replication in 18 countries identified seven genome-wide significant loci (P < 5 × 10−8). Index variants at the new loci map to chromosomes 13q12 (POMP), 11q23.3 (TMEM136), 6p21 (AGPAT1), 3p24 (RBMS3) and 5q23 (near SEMA6A). These findings provide biological insights into the pathology of XFS, and highlight a potential role for naturally occurring rare LOXL1 variants in disease biology.
Exfoliation syndrome (XFS) is the commonest recognizable cause of open angle glaucoma world-wide. To better understand the etiology of XFS, we conducted a genome-wide association study (GWAS) on 1,484 patients and 1,188 controls from Japan, and followed up the most significant findings on a further 6,901 patients and 20,727 controls from 17 countries across 6 continents. We discovered a significant association between a new locus (CACNA1A rs4926244) and increased susceptibility to XFS (Odds ratio [OR] = 1.16, P = 3.36 × 10−11). Although overwhelming association at the LOXL1 locus was confirmed, the key SNP marker (LOXL1 rs4886776) demonstrated allelic reversal depending on ethnic grouping (In Japanese: ORA-allele= 9.87, P = 2.13 × 10−217; In non-Japanese: ORA-allele= 0.49, P = 2.35 × 10−31). Our findings represent the first genetic locus outside of LOXL1 which surpasses genome-wide significance for XFS, and provides insight into the biology and pathogenesis of the disease.
The design of cationic liposomes for efficient mRNA delivery can significantly improve mRNA-based therapies. Lipoplexes based on polycationic lipid 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2X3) and helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) were formulated in different molar ratios (1:1, 1:2, 1:3) to efficiently deliver model mRNAs to BHK-21 and A549. The objective of this study was to examine the effect of 2X3-DOPE composition as well as lipid-to-mRNA ratio (amino-to-phosphate group ratio, N/P) on mRNA transfection. We found that lipoplex-mediated transfection efficiency depends on both liposome composition and the N/P ratio. Lipoplexes with an N/P ratio of 10/1 showed nanometric hydrodynamic size, positive ζ potential, maximum loading, and transfection efficiency. Liposomes 2X3-DOPE (1:3) provided the superior delivery of both mRNA coding firefly luciferase and mRNA-eGFP into BHK-21 cells and A549 cells, compared with commercial Lipofectamine MessengerMax.
Background: The ability of ErbB3 receptor to functionally complement ErbB1-2 and induce tumor resistance to their inhibitors makes it a unique target in cancer therapy by monoclonal antibodies. Here we report the expression, purification and structural analysis of a new anti-ErbB3 single-chain antibody. Methods: The VHH fragment of the antibody was expressed in E. coli SHuffle cells as a SUMO fusion, cleaved by TEV protease and purified to homogeneity. Binding to the extracellular domain of ErbB3 was studied by surface plasmon resonance. For structural studies, the antibody was crystallized by hanging-drop vapor diffusion in two different forms. Results: We developed a robust and efficient system for recombinant expression of single-domain antibodies. The purified antibody was functional and bound ErbB3 with K D=15±1 nM. The crystal structures of the VHH antibody in space groups C2 and P1 were solved by molecular replacement at 1.6 and 1.9 Å resolution. The high-quality electron density maps allowed us to build precise atomic models of the antibody and the putative paratope. Surprisingly, the CDR H2 existed in multiple distant conformations in different crystal forms, while the more complex CDR H3 had a low structural variability. The structures were deposited under PDB entry codes 6EZW and 6F0D. Conclusions: Our results may facilitate further mechanistic studies of ErbB3 inhibition by single-chain antibodies. Besides, the solved structures will contribute to datasets required to develop new computational methods for antibody modeling and design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.