Target-derived factors organize synaptogenesis by promoting differentiation of nerve terminals at synaptic sites. Several candidate organizing molecules have been identified based on their bioactivities in vitro, but little is known about their roles in vivo. Here, we show that three sets of organizers act sequentially to pattern motor nerve terminals: FGFs, beta2 laminins, and collagen alpha(IV) chains. FGFs of the 7/10/22 subfamily and broadly distributed collagen IV chains (alpha1/2) promote clustering of synaptic vesicles as nerve terminals form. beta2 laminins concentrated at synaptic sites are dispensable for embryonic development of nerve terminals but are required for their postnatal maturation. Synapse-specific collagen IV chains (alpha3-6) accumulate only after synapses are mature and are required for synaptic maintenance. Thus, multiple target-derived signals permit discrete control of the formation, maturation, and maintenance of presynaptic specializations.
The b and c variants of fibroblast growth factor receptor 2 (FGFR2) differ in sequence, binding specificity, and localization. Fgfr2b, expressed in epithelia, is required for limb outgrowth and branching morphogenesis, whereas the mesenchymal Fgfr2c variant is required by the osteocyte lineage for normal skeletogenesis. Gain-of-function mutations in human FGFR2c are associated with craniosynostosis syndromes. To confirm and extend this evidence, we introduced a Cys342Tyr replacement into Fgfr2c to create a gain-of-function mutation equivalent to a mutation in human Crouzon and Pfeiffer syndromes.
SummaryOrgan formation and regeneration require epithelial progenitor expansion to engineer, maintain, and repair the branched tissue architecture. Identifying the mechanisms that control progenitor expansion will inform therapeutic organ (re)generation. Here, we discover that combined KIT and fibroblast growth factor receptor 2b (FGFR2b) signaling specifically increases distal progenitor expansion during salivary gland organogenesis. FGFR2b signaling upregulates the epithelial KIT pathway so that combined KIT/FGFR2b signaling, via separate AKT and mitogen-activated protein kinase (MAPK) pathways, amplifies FGFR2b-dependent transcription. Combined KIT/FGFR2b signaling selectively expands the number of KIT+K14+SOX10+ distal progenitors, and a genetic loss of KIT signaling depletes the distal progenitors but also unexpectedly depletes the K5+ proximal progenitors. This occurs because the distal progenitors produce neurotrophic factors that support gland innervation, which maintains the proximal progenitors. Furthermore, a rare population of KIT+FGFR2b+ cells is present in adult glands, in which KIT signaling also regulates epithelial-neuronal communication during homeostasis. Our findings provide a framework to direct regeneration of branched epithelial organs.
Lacrimo-auriculo-dento-digital (LADD) syndrome is characterized by lacrimal duct aplasia, malformed ears and deafness, small teeth and digital anomalies. We identified heterozygous mutations in the tyrosine kinase domains of the genes encoding fibroblast growth factor receptors 2 and 3 (FGFR2, FGFR3) in LADD families, and in one further LADD family, we detected a mutation in the gene encoding fibroblast growth factor 10 (FGF10), a known FGFR ligand. These findings increase the spectrum of anomalies associated with abnormal FGF signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.