The intensive use of mineral (M) fertilizers may cause harm the environment via leaching or greenhouse gas emissions, destroy soil fertility as a consequence of loss of soil organic matter, and, due to their high price, they are economically unviable for producers. It is widely accepted that organic (O) fertilizers may deal with pressing challenges facing modern agriculture, even if farmers need to improve their knowledge for applying in fertilization programs. A meta-analysis approach has been adopted to evaluate the effects on soil organic carbon (SOC) and crop yield of O fertilizers, applied alone or in combination with mineral fertilizers (MO) under conventional (CT), reduced (RT), and no-tillage (NT) regimes. The analysis was performed in different climatic conditions, soil properties, crop species, and irrigation management. Organic fertilizers have a positive influence in increasing SOC compared with M (on average 12.9%), even if high values were observed under NT (20.6%). The results highlighted the need for flexible and environment-specific systems when considering organic fertilization subjected to different tillage regimes. Similarly, MO application showed a better crop yield response in CT and RT under coarse soils when compared with M fertilizer applied alone (on average 13.4 and 12.7%, respectively), while in medium-textured soils, CT and RT yielded better than NT under O fertilizers (9.5 and 11.2 vs. 2.5%, respectively). Among the crop species, legumes performed better when O fertilizers were adopted than M fertilizers (on average 15.2%), while among the other crop species, few differences were detected among the fertilization programs. Under irrigated systems, RT and NT led to higher productivity than CT, especially under MO treatments (on average 9.2 vs. 3.4%, respectively). The results highlighted the importance of the environmental and agronomical factors and how their understanding could affect the impact of these conservation farming practices on crop productivity to improve the sustainability of the farming system in a specific region.
Grain legumes, also known as pulses, are edible seeds belonging to plants of Leguminosae family known as important sources for human nutrition because they provide proteins rich in essential amino acids (Mann et al., 2020). Pulses are the basis on Mediterranean diet and frequently used as a necessary supplement of the protein sources, such as those from animal origin
Agricultural intensification may cause significant changes in weed density due to high weed competitiveness. Therefore, sustainable practices are to be designed to get maximum benefits of plant biodiversity in the agro-ecosystems. Field experiments were conducted in 2013/2014 and 2014/2015 to evaluate the impact of fertilizer source and soil tillage on weed spectrum in durum wheat (Triticum durum Desf.). Treatments in this study were: (i) two fertilizer sources (mineral fertilizer (MIN) and municipal organic waste (MOW)), and (ii) three tillage regimes (plowing (Plo), subsoiling (Sub) and spading (SM)). A randomized complete block design with three replications was adopted. Data on weed density and biomass were collected at the wheat tillering stage. Weed density was higher in MOW than MIN (53.8 vs. 44.0 plants·m−2), especially in 2014/2015, while S was the highest among tillage regimes (58.2 plants·m−2). Annual and monocots species were always the highest in subsoiling (43.5 and 10.1 plants·m−2). The density of perennial and dicots species was higher in MOW compared with MIN plots, regardless of soil tillage management. Weed community, in terms of weed species composition, varied between the two fertilizer sources, while among soil tillage regimes, it only differed between plowing and subsoiling. Based on the analysis of weed community composition, annual dicot species were mainly associated with plowing, while monocots tended to be associated with MIN fertilizer. Spading tillage may be a useful strategy for managing weed diversity under organic fertilization, where mineral soil nitrogen availability was limited. Conversely, the spading machine produced lower grain yields than plowing with mineral fertilizer application.
Crop yield under reduced tillage (RT) practices is a concern for sustainable production worldwide because it is related to different environmental and agronomic factors than conventionally tilled soils. This study aimed to evaluate how climate, soil, and farming practices could affect crop yield under RT, especially under different sources of fertilisation [mineral (M), mineral + organic (MO), and organic (O)]. Multilevel meta-analysis was adopted. The analysis was performed taking into consideration environmental conditions, soil properties, crop rotation, and crop species. Only studies that reported the interaction effect of soil tillage and nutrients management on grain yield were included. The results suggest that the impact of soil tillage and fertilisation sources on crop yield depended on crop species. Using reduced tillage practices, adopting only organic nutrient sources could produce enough grains for legume crops. However, combining both inorganic and organic fertilizers added benefits for cereal crops in terms of grain yield production. This study highlights how conservation tillage practices could be affected by environmental and agronomic factors.
There are numerous food safety aspects that must be taken into consideration by organic food producers and processors to ensure the safety and quality of their products. The application of Hazard Analysis and Critical Control Point (HACCP) principles, together with the implementation of good hygiene practices (GHP), ensures that food safety and process hygiene criteria are met. This study was based on a survey conducted among 316 producers and processors representing the organic food sector in five European countries (Croatia, Estonia, Germany, Italy and Poland). The knowledge and experience of organic food operators with HACCP systems were evaluated. Moreover, their needs and expectations towards assistance (training, guidance materials) that could improve the level of knowledge and compliance with respective food safety rules and regulations were assessed. The need for support on a number of issues related to food safety and guidance documents on the application of HACCP principles were also identified. This study provides highlights of the application of HACCP principles, with particular focus on identifying priorities and needs for two types of food operators (food producers and food processors). Although most of the surveyed food operators were confirmed to have basic knowledge regarding the HACCP system, there was a lack of understanding of the system principles. The needs and expectations varied among the studied countries and types of organic operators. Recognition of the full potential of the HACCP system requires assistance, particularly in the preparation of documents and records. Further research is needed to understand the implications of these findings and to identify effective strategies to improve the HACCP knowledge of food operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.