CpG-oligonucleotide (ODN)-induced TLR9 activation exerts anti-inflammatory effects. TREM-1 is a DAP12-associated receptor, which is up-regulated in response to LPS-mediated TLR4 activation, and plays an essential role in innate immune response by augmenting the production of pro-inflammatory chemokines and cytokines. TREM-1 up-regulation resulted in a grave outcome in animal models, and in patients with sepsis and rheumatoid arthritis, while its soluble form (sTREM-1) exerted anti-inflammatory effects. We hypothesized that CpG-ODN regulates membrane TREM-1 expression and sTREM-1 shedding. The effect of CpG-ODN-induced TLR9 activation on TREM-1 expression and shedding was studied in mouse peritoneal macrophages and the mouse macrophage cell line RAW 264.7. While TREM-1 expression was not altered by CpG-ODN alone, stimulation with both LPS and CpG-ODN significantly abrogated TREM-1 LPS-induced up-regulation. Moreover, CpG-ODN-induced TLR9 activation either alone or in combination with LPS resulted in a significant increase of supernatant sTREM-1. The release of sTREM-1 was correlated positively with MMP-9 activity and was inhibited by chloroquine. These results suggest (i) a novel CpG-ODN-induced TLR9 pathway for the regulation of macrophage TREM-1 expression and MMP-9-mediated TREM-1 shedding; and (ii) a novel mechanism for an anti-inflammatory effect of CpG-ODN through abrogation of LPS-induced membrane TREM-1 up-regulation and increased MMP-9-mediated TREM-1 shedding.
Proinflammatory cytokines play a pathogenic role in congestive heart failure. In this study, the effect of peritoneal dialysis treatment on inflammatory cytokines levels in refractory congestive heart failure patients was investigated. During the treatment, the patients reached a well-tolerated edema-free state and demonstrated significant improvement in NYHA functional class. Brain natriuretic peptide decreased significantly after 3 months of treatment and remained stable at 6 months. C-reactive protein, a plasma marker of inflammation, decreased significantly following the treatment. Circulating inflammatory cytokines TNF-α and IL-6 decreased significantly after 3 months of peritoneal dialysis treatment and remained low at 6 months. The reduction in circulating inflammatory cytokines levels may be partly responsible for the efficacy of peritoneal dialysis for refractory congestive heart failure.
Background: Familial hyperkalemia and hypertension (FHHt) is a rare genetic disorder manifested by hyperkalemia and early hypertension. Hypercalciuria is another accompanying feature. Mutations in WNK4 and WNK1 were found initially, and recently additional mutations were found in two genes, KLHL3 and CUL3, which are components of the Ubiquitin system. It was not reported whether these latter mutations are accompanied by hypercalciuria. Methods: We compared urinary calcium excretion (UCa) in affected subjects with FHHt and KLHL3 mutations, and in their unaffected family members, and in affected subjects with FHHt and WNK4 Q565E mutation. Results: Two new families with FHHt including a total number of 23 subjects, 10 of them affected, in whom previously described mutations in KLHL3 (Q309R and R528H) were identified. Presenting features were short stature in the first family, and transient tachypnea of the newborn (TTN) in the second. Affected subjects had hypercalciuria. UCa levels in affected subjects in the two families were significantly higher than in unaffected subjects (0.608 ± 0.196 vs. 0.236 ± 0.053 mmol Ca per mmol creatinine, respectively (p < 0.0001)). Hypercalciuria in FHHt with KLHL3 mutations is less severe than that observed in FHHt with the Q565E WNK4 mutation (0.608 ± 0.196 (n = 10) mmol Ca per mmol creatinine versus 0.860 ± 0.295 (n = 29), respectively (p = 0.0168)). Conclusions: FHHt caused by KLHL3 mutations is accompanied by hypercalciuria as well as hyperkalemia and hypertension. The similar phenomena observed for FHHt caused by WNK4 mutations fits the other evidence that WNK4 mutations are activating, and the aberrant mechanism of calcium handling by the kidney in FHHt.
Background: Familial hyperkalemia and hypertension (FHHt) is an inherited disorder manifested by hyperkalemia and hypertension. The following four causative genes were identified: WNK1, WNK4, CUL3, and KLHL3. For the first 3 genes, inheritance is autosomal dominant. For KLHL3, inheritance is mostly dominant. A few cases with autosomal recessive disease were described. The mechanism of these 2 modes of inheritance is not clear. In the recessive form, the phenotype of heterozygotes is not well described. Methods: Clinical and genetic investigation of members of 2 families was performed, one with recessive FHHt, and the other, an expansion of a family with Q309R KLHL3 dominant mutation, previously reported by us. Urinary exosomal sodium chloride cotransporter (NCC) was measured. Results: A family with recessive FHHt caused by a new KLHL3 mutation, S553L, is described. This consanguineous Jewish family of Yemenite extraction, included 2 homozygous and 7 heterozygous affected subjects. Increased urinary NCC was found in the affected members of the family with dominant Q309R KLHL3 mutation. In the recessive S553L family, homozygotes appeared to have increased urinary NCC abundance. Surprisingly, heterozygotes seemed to have also increased urinary NCC, though at an apparently lower degree. This was not accompanied by a clinical phenotype. Conclusions: A new recessive mutation in KLHL3 (S553L) was identified in FHHt. Increased urinary NCC was found in affected members (heterozygous) with dominant KLHL3 Q309R, and in affected members (homozygous) of the recessive form. Unexpectedly, in the recessive disease, heterozygotes seemed to have increased urinary NCC as well, apparently not sufficient quantitatively to produce a clinical phenotype.
Background: Cardiac collagen remodeling is important in the progression of heart failure. Estimation of cardiac collagen turnover by serum levels of serological markers is used for monitoring cardiac tissue repair and fibrosis. Peritoneal dialysis (PD) is used for the long-term management of refractory congestive heart failure (CHF). In this study, we investigated the effect of PD treatment on circulating fibrosis markers levels in patients with refractory CHF and fluid overload. Methods: Twenty-five patients with refractory CHF treated with PD were prospectively enrolled in the study. Circulating fibrosis markers procollagen type III C-peptide (PIIINP), matrix metalloproteinase 2 (MMP-2), and tissue inhibitor of metalloproteinases I (TIMP-1) levels were checked at baseline and after three and six months of treatment. Results: The clinical benefit of PD manifested by improved NYHA functional class and reduced hospitalization rate. Serum brain natriuretic peptide (BNP) levels decreased significantly during the treatment. Serum MMP-2 and TIMP-1 decreased significantly on PD. Circulating PIIINP showed two patterns of change, either decreased or increased following PD treatment. Patients in whom circulating PIIINP decreased had significantly lower baseline serum albumin, lower baseline mean arterial blood pressure, higher serum CRP, and a less significant improvement in hospitalization rate compared to the patients in whom circulating PIIINP increased. Patients in whom all three markers decreased demonstrated a trend to longer survival compared to patients whose markers increased or did not change. Conclusion: In refractory CHF patients PD treatment was associated with a reduction in circulating fibrosis markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.