The function of antibodies (Abs) involves specific binding to antigens (Ags) and activation of other components of the immune system to fight pathogens. The six hypervariable loops within the variable domains of Abs, commonly termed complementarity determining regions (CDRs), are widely assumed to be responsible for Ag recognition, while the constant domains are believed to mediate effector activation. Recent studies and analyses of the growing number of available Ab structures, indicate that this clear functional separation between the two regions may be an oversimplification. Some positions within the CDRs have been shown to never participate in Ag binding and some off-CDRs residues often contribute critically to the interaction with the Ag. Moreover, there is now growing evidence for non-local and even allosteric effects in Ab-Ag interaction in which Ag binding affects the constant region and vice versa. This review summarizes and discusses the structural basis of Ag recognition, elaborating on the contribution of different structural determinants of the Ab to Ag binding and recognition. We discuss the CDRs, the different approaches for their identification and their relationship to the Ag interface. We also review what is currently known about the contribution of non-CDRs regions to Ag recognition, namely the framework regions (FRs) and the constant domains. The suggested mechanisms by which these regions contribute to Ag binding are discussed. On the Ag side of the interaction, we discuss attempts to predict B-cell epitopes and the suggested idea to incorporate Ab information into B-cell epitope prediction schemes. Beyond improving the understanding of immunity, characterization of the functional role of different parts of the Ab molecule may help in Ab engineering, design of CDR-derived peptides, and epitope prediction.
Antibodies are capable of specifically recognizing and binding antigens. Identification of the antigen-binding site, commonly dubbed paratope, is of high importance both for medical and biological applications. To date, the identification of antigen-binding regions (ABRs) relies on tools for the identification of complementarity-determining regions (CDRs). However, we have shown that up to 22% of the residues that actually bind the antigen fall outside the traditionally defined CDRs. The Paratome web server predicts the ABRs of an antibody, given its amino acid sequence or 3D structure. It is based on a set of consensus regions derived from a structural alignment of a non-redundant set of all known antibody–antigen complexes. Given a query sequence or structure, the server identifies the regions in the query antibody that correspond to the consensus ABRs. An independent set of antibody–antigen complexes was used to test the server and it was shown to correctly identify at least 94% of the antigen-binding residues. The Paratome web server is freely available at http://www.ofranlab.org/paratome/.
General protein-protein interfaces are known to be enriched, compared with other surface patches, with amino acids that can form stabilizing interactions. However, several studies reported that there are hardly any differences between the amino acid composition of B-cell epitopes and that of antigen surface residues. If the amino acid composition of epitopes is indistinguishable from other surface patches, how do antibodies (Abs) identify epitopes? Here, we analyze the antigen binding regions (ABRs, roughly corresponding to the complementarity determining regions) and the epitopes in a non-redundant set of all known Ab-antigen complexes. We find that the ABRs differ significantly from each other in their amino acid composition and length. Analysis of the energetic contribution of each ABR to antigen binding reveals that, while H3 often plays a key role in antigen binding, in many antibodies other ABRs are more important. Moreover, each ABR has a distinct propensity to bind different amino acids on the antigen. The combined binding preferences of the ABRs yield a total preference to amino acids with a composition that is virtually identical to that of surface residues. These results suggest that antibodies evolved to recognize protein surfaces. They may help in improving Ab engineering and B-cell epitope prediction.
The Complementarity Determining Regions (CDRs) of antibodies are assumed to account for the antigen recognition and binding and thus to contain also the antigen binding site. CDRs are typically discerned by searching for regions that are most different, in sequence or in structure, between different antibodies. Here, we show that ∼20% of the antibody residues that actually bind the antigen fall outside the CDRs. However, virtually all antigen binding residues lie in regions of structural consensus across antibodies. Furthermore, we show that these regions of structural consensus which cover the antigen binding site are identifiable from the sequence of the antibody. Analyzing the predicted contribution of antigen binding residues to the stability of the antibody-antigen complex, we show that residues that fall outside of the traditionally defined CDRs are at least as important to antigen binding as residues within the CDRs, and in some cases, they are even more important energetically. Furthermore, antigen binding residues that fall outside of the structural consensus regions but within traditionally defined CDRs show a marginal energetic contribution to antigen binding. These findings allow for systematic and comprehensive identification of antigen binding sites, which can improve the understanding of antigenic interactions and may be useful in antibody engineering and B-cell epitope identification.
Neural progenitor cells undergo somatic retrotransposition events, mainly involving L1 elements, which can be potentially deleterious. Here, we analyze the whole genomes of 20 brain samples and 80 non-brain samples, and characterized the retrotransposition landscape of patients affected by a variety of neurodevelopmental disorders including Rett syndrome, tuberous sclerosis, ataxia-telangiectasia and autism. We report that the number of retrotranspositions in brain tissues is higher than that observed in non-brain samples and even higher in pathologic vs normal brains. The majority of somatic brain retrotransposons integrate into pre-existing repetitive elements, preferentially A/T rich L1 sequences, resulting in nested insertions. Our findings document the fingerprints of encoded endonuclease independent mechanisms in the majority of L1 brain insertion events. The insertions are "non-classical" in that they are truncated at both ends, integrate in the same orientation as the host element, and their target sequences are enriched with a CCATT motif in contrast to the classical endonuclease motif of most other retrotranspositions. We show that L1Hs elements integrate preferentially into genes associated with neural functions and diseases. We propose that pre-existing retrotransposons act as "lightning rods" for novel insertions, which may give fine modulation of gene expression while safeguarding from deleterious events. Overwhelmingly uncontrolled retrotransposition may breach this safeguard mechanism and increase the risk of harmful mutagenesis in neurodevelopmental disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.