Natural language processing tools are used to automatically detect disturbances in transcribed speech of schizophrenia inpatients who speak Hebrew. We measure topic mutation over time and show that controls maintain more cohesive speech than inpatients. We also examine differences in how inpatients and controls use adjectives and adverbs to describe content words and show that the ones used by controls are more common than the those of inpatients. We provide experimental results and show their potential for automatically detecting schizophrenia in patients by means only of their speech patterns.
Psychosis is diagnosed based on disruptions in the structure and use of language, including reduced syntactic complexity, derailment, and tangentiality. With the development of computational analysis, natural language processing (NLP) techniques are used in many areas of life to make evaluations and inferences regarding people's thoughts, feelings and behavior. The present study explores morphological characteristic of schizophrenia inpatients using NLP. Transcripts of recorded stories by 49 male subjects (24 inpatients diagnosed with schizophrenia and 25 controls) about 14 Thematic Apperception Test (TAT) pictures were morphologically analyzed. Relative to the control group, the schizophrenic inpatients employed: (1) a similar ratio of nouns, but fewer verbs, adjectives and adverbs; (2) a higher ratio of lemmas to token (LTR) and type to token (TTR); (3) a smaller gap between LTR and TTR; and (4) greater use of the first person. The results were cross‐verified using three well‐known fitting classifier algorithms (Random Forest, XGBoost and a support vector machine). Tests of prediction accuracy, precision and recall found correct attribution of patients to the schizophrenia group at a rate of between 80 and 90%. Overall, the results suggest that the language of schizophrenic inpatients is significantly different from that of healthy controls, being morphologically less complex, more associative and more focused on the self. The findings support NLP analysis as a complementary addition to the traditional clinical psychosis evaluation for schizophrenia.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.