Using a general strategy for evaluating clinical tissue specimens, we found that 70% ethanol fixation and paraffin embedding is a useful method for molecular profiling studies. Human prostate and kidney were used as test tissues. The protein content of the samples was analyzed by one-dimensional gel electrophoresis, immunoblot, two-dimensional gel electrophoresis, and layered expression scanning. In each case, the fixed and embedded tissues produced results similar to that obtained from snap-frozen specimens, although the protein quantity was somewhat decreased. Recovery of mRNA was reduced in both quantity and quality in the ethanol-fixed samples, but was superior to that obtained from formalin-fixed samples and sufficient to perform reverse transcription polymerase chain reactions. Recovery of DNA from ethanol-fixed specimens was superior to formalin-fixed samples as determined by one-dimensional gel electrophoresis and polymerase chain reaction. In conclusion, specimens fixed in 70% ethanol and embedded in paraffin produce good histology and permit recovery of DNA, mRNA, and proteins sufficient for several downstream molecular analyses. Complete protocols and additional discussion of relevant issues are available on an accompanying website (http://cgap-mf.nih.gov/).
Mapping tumor cell protein networks in vivo will be critical for realizing the promise of patient-tailored molecular therapy. Cancer can be defined as a dysregulation or hyperactivity in the network of intracellular and extracellular signaling cascades. These protein signaling circuits are the ultimate targets of molecular therapy. Each patient's tumor may be driven by a distinct series of molecular pathogenic defects. Thus, for any single molecular targeted therapy, only a subset of cancer patients may respond. Individualization of therapy, which tailors a therapeutic regimen to a tumor molecular portrait, may be the solution to this dilemma. Until recently, the field lacked the technology for molecular profiling at the genomic and proteomic level. Emerging proteomic technology, used concomitantly with genomic analysis, promises to meet this need and bring to reality the clinical adoption of molecular stratification. The activation state of kinase-driven signal networks contains important information relative to cancer pathogenesis and therapeutic target selection. Proteomic technology offers a means to quantify the state of kinase pathways, and provides post-translational phosphorylation data not obtainable by gene arrays. Case studies using clinical research specimens are provided to show the feasibility of generating the critical information needed to individualize therapy. Such technology can reveal potential new pathway interconnections, including differences between primary and metastatic lesions. We provide a vision for individualized combinatorial therapy based on proteomic mapping of phosphorylation end points in clinical tissue material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.