Capsid assembly is the final event of virus replication, and its understanding is pivotal for the design of empty capsid-based recombinant vaccines and drug delivery systems. Although the capsid structure of several members of the picornavirus family has been elucidated, little is known about the structural elements governing the assembly process that is tightly associated with proteolytic processing of the viral polyprotein. Among the picornaviruses, hepatitis A virus (HAV) is unique in that it contains VP1-2A as a structural component and the small structural protein VP4, which argues for an assembly pathway different from that proposed for other picornaviruses. Using a recombinant system we show here that proteolytic processing of the HAV capsid proteins' precursor P1-2A is independent of the terminal domains 2A and VP4 of the substrate. However, both terminal domains play distinct roles in the assembly of viral particles. 2A as part of P1-2A is a primary signal for the assembly of pentameric structures which only further aggregate to empty viral capsids when VP4 is present as the N terminus of the precursor. Particle formation in the hepatovirus genus is thus regulated by two intrinsic signals that are distinct from those described for other picornaviruses.
Unlike other picornaviruses, hepatitis A virus (HAV) replicates so inefficiently in cell culture that the study of its RNA biosynthesis presents a major experimental challenge. To assess viral RNA replication independent of particle formation, a subgenomic replicon representing a selfreplicating RNA was constructed by replacing the P1 domain encoding the capsid proteins with the firefly luciferase sequence. Although translation of the HAV replicon was as efficient as a similar poliovirus replicon, the luciferase activity derived from replication of the HAV construct was more than 100-fold lower than that of poliovirus. The replication capacity of the HAV replicon was clearly demonstrated by its ability to recombine genetically with a non-viable, full-length HAV genome that served as capsid donor and thus to rescue a fully infectious virus. In contrast to a replicationdeficient replicon, co-expression of the genetically marked and replication-competent HAV replicon with several lethally mutated HAV genomes resulted in the successful rescue of infectious HAV with a unique genetic marker. Our data suggest : (i) that autonomous HAV RNA replication does not require sequences for the HAV structural proteins ; and (ii) that low-level genome replication can unequivocally be demonstrated by the rescue of infectious virus after co-expression with nonviable genomes.
SUMMARYThe propagation of hepatitis A virus (HAV) in the cell line PLC/PRF/5 made possible the radiolabelling in vivo of mature, infectious hepatitis A virions and the determination of their physicochemical properties. In contrast to poliovirus type 2 (160S, 1.340 g/ml), HAV had a sedimentation coefficient of 156 + 2S and a buoyant density of 1.332 g/ml in CsCI. The genome of HAV consisted of linear single-stranded RNA which sedimented at 32.5S under non-denaturing conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.