Embryos from patients with endometriosis presented with altered relative kinetics suggesting poorer embryo quality. These findings support recently published data demonstrating reduced oocyte quality in patients with endometriosis which is one possible explanation for their poor response to fertility treatment.
BackgroundThe aim of this study was to compare pregnancy rates in patients undergoing IVF/ICSI with embryo transfer after 4 and 5 days of culture in a closed incubation system with integrated time-lapse imaging.MethodsOut of n = 2207 in vitro fertilization (IVF)/ intracytoplasmic sperm injection (ICSI) cycles performed between January 2011 and April 2016 at a tertiary referral university hospital, a total of n = 599 IVF/ICSI cycles with prolonged embryo culture in an integrated time-lapse system (EmbryoScope© (Vitrolife)) until day 4 or 5 were retrospectively analyzed with regard to embryo morphology and pregnancy rates.ResultsA transfer on day 5 compared to a transfer on day 4 did not result in higher implantation and clinical pregnancy rates (IR 29.4% on day 4 versus 33.0% on day 5, p = 0.310; CPR 45.2% on day 4 versus 45.7% on day 5, p = 1.0). The percentage of ideal embryos transferred on day 4 was comparable to the rate of ideal embryos transferred on day 5 (41.6% versus 44.1%, p = 0.508). However, on day 4 a significantly higher number of embryos was transferred (1.92 on day 4 versus 1.84 on day 5, p = 0.023), which did not result in higher rates of multiple pregnancies.ConclusionsPregnancy rates in IVF/ICSI cycles with integrated time-lapse incubation and transfer on day 4 and 5 are comparable. This finding provides the clinician, IVF laboratory and patient with more flexibility.Trial registrationThis study was retrospectively registered by the local ethics committee of the University of Heidelberg on December 19, 2016 (registration number S-649/2016).
Although the zinc finger transcription factor Wt1 has been linked to female fertility, its precise role in this process has not yet been understood. We have sequenced the WT1 exons in a panel of patients with idiopathic infertility and have identified a missense mutation in WT1 in one patient out of eight. This mutation leads to an amino acid change within the zinc finger domain and results in reduced DNA binding. We utilized Wt1+/- mice as a model to mechanistically pinpoint the consequences of reduced Wt1 levels for female fertility. Our results indicate that subfertility in Wt1+/- female mice is a maternal effect caused by the Wt1-dependent de-regulation of Prss29, encoding a serine protease. Notably, blocking Prss29 activity was sufficient to rescue subfertility in Wt1+/- mice indicating Prss29 as a critical factor in female fertility. Molecularly, Wt1 represses expression of Prss29. De-repression and precocious expression of Prss29 in the oviduct of Wt1+/- mice interferes with pre-implantation development. Our study reveals a novel role for Wt1 in early mammalian development and identifies proteases as critical mediators of the maternal-embryonic interaction. Our data also suggest that the role of Wt1 in regulating fertility is conserved in mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.