Changes in the ventilation of the oxygen minimum zone (OMZ) of the tropical North Atlantic are studied using oceanographic data from 18 research cruises carried out between 28.58 and 238W during 1999-2008 as well as historical data referring to the period 1972-85. In the core of the OMZ at about 400-m depth, a highly significant oxygen decrease of about 15 mmol kg 21 is found between the two periods. During the same time interval, the salinity at the oxygen minimum increased by about 0.1. Above the core of the OMZ, within the central water layer, oxygen decreased too, but salinity changed only slightly or even decreased. The scatter in the local oxygen-salinity relations decreased from the earlier to the later period suggesting a reduced filamentation due to mesoscale eddies and/or zonal jets acting on the background gradients. Here it is suggested that latitudinally alternating zonal jets with observed amplitudes of a few centimeters per second in the depth range of the OMZ contribute to the ventilation of the OMZ. A conceptual model of the ventilation of the OMZ is used to corroborate the hypothesis that changes in the strength of zonal jets affect mean oxygen levels in the OMZ. According to the model, a weakening of zonal jets, which is in general agreement with observed hydrographic evidences, is associated with a reduction of the mean oxygen levels that could significantly contribute to the observed deoxygenation of the North Atlantic OMZ.
Tropical cyclones (TCs) change the ocean by mixing deeper water into the surface layers, by the direct air–sea exchange of moisture and heat from the sea surface, and by inducing currents, surface waves, and waves internal to the ocean. In turn, the changed ocean influences the intensity of the TC, primarily through the action of surface waves and of cooler surface temperatures that modify the air–sea fluxes. The Impact of Typhoons on the Ocean in the Pacific (ITOP) program made detailed measurements of three different TCs (i.e., typhoons) and their interaction with the ocean in the western Pacific. ITOP coordinated meteorological and oceanic observations from aircraft and satellites with deployments of autonomous oceanographic instruments from the aircraft and from ships. These platforms and instruments measured typhoon intensity and structure, the underlying ocean structure, and the long-term recovery of the ocean from the storms' effects with a particular emphasis on the cooling of the ocean beneath the storm and the resulting cold wake. Initial results show how different TCs create very different wakes, whose strength and properties depend most heavily on the nondimensional storm speed. The degree to which air–sea fluxes in the TC core were reduced by ocean cooling varied greatly. A warm layer formed over and capped the cold wakes within a few days, but a residual cold subsurface layer persisted for 10–30 days.
The zonal equatorial circulation of the upper 700 m in the central tropical Atlantic is studied based on 11 cross‐equatorial ship sections taken at 23–29°W during 1999 to 2005 and on data from a pair of moored Acoustic Doppler current profilers deployed on the equator at 23°W during February 2004 to May 2005. The observations on the equator reveal the existence of two mean westward cores of the Equatorial Intermediate Current below the Equatorial Undercurrent. In contrast to the 2002 moored observations at the same position the intraseasonal variability during the mooring period is dominated by zonal instead of meridional velocity fluctuations.
Two decades of drifter and satellite data allow the authors to describe the seasonal evolution of the surface circulation of the Arabian Sea, which reverses annually with the Indian monsoon winds. This study finds several features that advance current understanding. Most significantly, northward flow appears along the length of the western boundary, together with a weak anticyclone at 6°N (a precursor to the Great Whirl) as early as March or April, one or two months before the southwest monsoon winds. This circulation is driven by planetary waves, which are initiated by wind curl forcing during the previous southwest monsoon, leading the authors to speculate that there is an oceanic mechanism through which one monsoon may precondition the next. Second, the authors find that the eastward South Equatorial Counter Current (SECC) is present year-round, fed by the northward East African Coastal Current (EACC). During the southwest monsoon the EACC overshoots the equator and splits, feeding both northward into the Somali Current and eastward into the SECC by looping back across the equator. This retroflection of the EACC is what was previously known as the southern gyre. At the surface, this circulation is obscured by strong, locally wind-driven, cross-equatorial transport. The semiannual variability of the SECC is governed by Ekman pumping over the equatorial gyre. Finally, there is broad, strong eastward flow at the mouth of the Gulf of Aden throughout the southwest monsoon, coincident with alongshore winds and a switch in sign of the wind stress curl along the axis of the atmospheric monsoon jet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.