A nanoindentation strain-rate jump technique has been developed for determining the local strainrate sensitivity (SRS) of nanocrystalline and ultrafine-grained (UFG) materials. The results of the new method are compared to conventional constant strain-rate nanoindentation experiments, macroscopic compression tests, and finite element modeling (FEM) simulations. The FEM simulations showed that nanoindentation tests should yield a similar SRS as uniaxial testing and generally a good agreement is found between nanoindentation strain-rate jump experiments and compression tests. However, a higher SRS is found in constant indentation strain-rate tests, which could be caused by the long indentation times required for tests at low indentation strain rates. The nanoindentation strain-rate jump technique thus offers the possibility to use single indentations for determining the SRS at low strain rates with strongly reduced testing times. For UFG-Al, extremely fine-grained regions around a bond layer exhibit a substantial higher SRS than bulk material.
The strain-rate sensitivity of ultrafine-grained aluminum (Al) and nanocrystalline nickel (Ni) is studied with an improved nanoindentation creep method. Using the dynamic contact stiffness thermal drift influences can be minimized and reliable creep data can be obtained from nanoindentation creep experiments even at enhanced temperatures and up to 10 h. For face-centered cubic (fcc) metals it was found that the creep behavior is strongly influenced by the microstructure, as nanocrystalline (nc) as well as ultrafine-grained (ufg) samples show lower stress exponents when compared with their coarse-grained (cg) counterparts. The indentation creep behavior resembles a power-law behavior with stress exponents n being ; 20 at room temperature. For higher temperatures the stress exponents of ufg-Al and nc-Ni decrease down to n ; 5. These locally determined stress exponents are similar to the macroscopic exponents, indicating that similar deformation mechanisms are acting during indentation and macroscopic deformation. Grain boundary sliding found around the residual indentations is related to the motion of unconstrained surface grains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.