Aneuploidy is a hallmark of cancer and underlies genetic disorders characterized by severe developmental defects, yet the molecular mechanisms explaining its effects on cellular physiology remain elusive. Here we show, using a series of human cells with defined aneuploid karyotypes, that gain of a single chromosome increases genomic instability. Next-generation sequencing and SNP-array analysis reveal accumulation of chromosomal rearrangements in aneuploids, with break point junction patterns suggestive of replication defects. Trisomic and tetrasomic cells also show increased DNA damage and sensitivity to replication stress. Strikingly, we find that aneuploidy-induced genomic instability can be explained by the reduced expression of the replicative helicase MCM2-7. Accordingly, restoring near-wild-type levels of chromatin-bound MCM helicase partly rescues the genomic instability phenotypes. Thus, gain of chromosomes triggers replication stress, thereby promoting genomic instability and possibly contributing to tumorigenesis.
SUMMARY Aneuploidy is a hallmark of cancer, although its effects on tumorigenesis are unclear. Here, we investigated the relationship between aneuploidy and cancer development using cells engineered to harbor single extra chromosomes. We found that nearly all trisomic cell lines grew poorly in vitro and as xenografts, relative to genetically matched euploid cells. Moreover, the activation of several oncogenic pathways failed to alleviate the fitness defect induced by aneuploidy. However, following prolonged growth, trisomic cells acquired additional chromosomal alterations that were largely absent from their euploid counterparts and that correlated with improved fitness. Thus, while single-chromosome gains can suppress transformation, the genome-destabilizing effects of aneuploidy confer an evolutionary flexibility that may contribute to the aggressive growth of advanced malignancies with complex karyotypes.
Aneuploidy is a hallmark of cancer and is associated with malignancy and poor prognosis. Recent studies have revealed that aneuploidy inhibits proliferation, causes distinct alterations in the transcriptome and proteome and disturbs cellular proteostasis. However, the molecular mechanisms underlying the changes in gene expression and the impairment of proteostasis are not understood. Here, we report that human aneuploid cells are impaired in HSP90-mediated protein folding. We show that aneuploidy impairs induction of the heat shock response suggesting that the activity of the transcription factor heat shock factor 1 (HSF1) is compromised. Indeed, increased levels of HSF1 counteract the effects of aneuploidy on HSP90 expression and protein folding, identifying HSF1 overexpression as the first aneuploidy-tolerating mutation in human cells. Thus, impaired HSF1 activity emerges as a critical factor underlying the phenotypes linked to aneuploidy. Finally, we demonstrate that deficient protein folding capacity directly shapes gene expression in aneuploid cells. Our study provides mechanistic insight into the causes of the disturbed proteostasis in aneuploids and deepens our understanding of the role of HSF1 in cytoprotection and carcinogenesis.
BackgroundAneuploidy, a karyotype deviating from multiples of a haploid chromosome set, affects the physiology of eukaryotes. In humans, aneuploidy is linked to pathological defects such as developmental abnormalities, mental retardation or cancer, but the underlying mechanisms remain elusive. There are many different types and origins of aneuploidy, but whether there is a uniform cellular response to aneuploidy in human cells has not been addressed so far.ResultsHere we evaluate the transcription profiles of eleven trisomic and tetrasomic cell lines and two cell lines with complex aneuploid karyotypes. We identify a characteristic aneuploidy response pattern defined by upregulation of genes linked to endoplasmic reticulum, Golgi apparatus and lysosomes, and downregulation of DNA replication, transcription as well as ribosomes. Strikingly, complex aneuploidy elicits the same transcriptional changes as trisomy. To uncover the triggers of the response, we compared the profiles with transcription changes in human cells subjected to stress conditions. Interestingly, we found an overlap only with the response to treatment with the autophagy inhibitor bafilomycin A1. Finally, we identified 23 genes whose expression is significantly altered in all aneuploids and which may thus serve as aneuploidy markers.ConclusionsOur analysis shows that despite the variability in chromosome content, aneuploidy triggers uniform transcriptional response in human cells. A common response independent of the type of aneuploidy might be exploited as a novel target for cancer therapy. Moreover, the potential aneuploidy markers identified in our analysis might represent novel biomarkers to assess the malignant potential of a tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.