BackgroundInvertebrate nervous systems are highly disparate between different taxa. This is reflected in the terminology used to describe them, which is very rich and often confusing. Even very general terms such as 'brain', 'nerve', and 'eye' have been used in various ways in the different animal groups, but no consensus on the exact meaning exists. This impedes our understanding of the architecture of the invertebrate nervous system in general and of evolutionary transformations of nervous system characters between different taxa.ResultsWe provide a glossary of invertebrate neuroanatomical terms with a precise and consistent terminology, taxon-independent and free of homology assumptions. This terminology is intended to form a basis for new morphological descriptions. A total of 47 terms are defined. Each entry consists of a definition, discouraged terms, and a background/comment section.ConclusionsThe use of our revised neuroanatomical terminology in any new descriptions of the anatomy of invertebrate nervous systems will improve the comparability of this organ system and its substructures between the various taxa, and finally even lead to better and more robust homology hypotheses.
Chaetognaths (arrow worms) play an important role as predators in planktonic food webs. Their phylogenetic position is unresolved, and among the numerous hypotheses, affinities to both protostomes and deuterostomes have been suggested. Many aspects of their life history, including ontogenesis, are poorly understood and, though some aspects of their embryonic and postembryonic development have been described, knowledge of early neural development is still limited. This study sets out to provide new insights into neurogenesis of newly hatched Spadella cephaloptera and their development during the following days, with attention to the two main nervous centers, the brain and the ventral nerve center. These were examined with immunohistological methods and confocal laser-scan microscopic analysis, using antibodies against tubulin, FMRFamide, and synapsin to trace the emergence of neuropils and the establishment of specific peptidergic subsystems. At hatching, the neuronal architecture of the ventral nerve center is already well established, whereas the brain and the associated vestibular ganglia are still rudimentary. The development of the brain proceeds rapidly over the next 6 days to a state that resembles the adult pattern. These data are discussed in relation to the larval life style and behaviors such as feeding. In addition, we compare the larval chaetognath nervous system and that of other bilaterian taxa in order to extract information with phylogenetic value. We conclude that larval neurogenesis in chaetognaths does not suggest an especially close relationship to either deuterostomes or protostomes, but instead displays many apomorphic features.
Abstract. We examined the brain architecture in different species of Chaetognatha using immunofluorescence methods with a set of nervous system markers and confocal laser‐scan microscopic analysis. These markers include antibodies against synaptic proteins, RFamide‐related peptides, and tyrosinated tubulin, as well as a marker of cell nuclei. Furthermore, we present a 3D reconstruction based on histological section series. Our results expand the previous knowledge on neuroanatomy in Chaetognatha. We suggest a structural and functional subdivision of the rather complex chaetognath brain into two domains, a posterior domain that may be primarily involved in the integration of sensory input, and an anterior domain that may be involved in the control of the mouthparts and the anterior part of the digestive system. Immunolocalization of a neuropeptide suggests the presence of an identifiable group of neurons associated with the brain of all species examined here. However, our data also reveal a certain degree of interspecific variation and divergence within the Chaetognatha concerning, for example, the pattern of nerves branching off the brain and the proportional sizes of the various neuropil compartments. We compare our data to brain architecture in various other representatives of Protostomia and Deuterostomia. The chaetognath brain fits within the range of structural variation encountered in protostomian brains, and we cannot find any brain characteristics that would argue in favor of placing chaetognaths outside of the Protostomia. Rather, we see the circumoral arrangement of their cephalic nervous system as an argument that suggests protostome affinities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.