The crystallization and dynamics of water confined in model mesoporous silica particles (pore diameters ranging from 2.1 to 5 nm; pore length ≈ 1 μm) are studied in homogeneous aqueous suspensions by dielectric spectroscopy, differential scanning calorimetry, and nuclear magnetic resonance (NMR) techniques. We establish the phase diagram (T vs 1/d) of confined water covering a broad range of pore diameters. A linear dependence of the heterogeneous and the homogeneous nucleation temperatures on the inverse pore diameter is shown. The two lines converge at a pore diameter of ∼2.6 nm, below which formation of stable crystals is suppressed. By combining dielectric spectroscopy and different NMR techniques, we determine the dynamics of water within mesoporous silica over broad temperature and frequency ranges. Both techniques identify two dynamically distinguishable fractions of confined water coexisting within the pores. We attribute the two fractions to an interfacial water layer at the pore walls and confined water in the pore interior. Two alternative scenarios are proposed to rationalize the coexistence of two dynamically distinguishable water fractions. In the first scenario, two liquid fractions of water coexist under extreme confinement conditions for a range of temperatures; we discuss similarities with the two ultraviscous liquids (high-density liquid and low-density liquid) put forward for supercooled bulk water. In the second scenario, a liquid and a solid phase coexist; we conjecture that highly distorted and unstable crystal nuclei exist under extreme confinement that exhibit reorientation dynamics with time scales intermediate to the surrounding confined liquid and to bulk ice.
We performed nuclear magnetic resonance measurements on lead(II) nitrate Pb(NO 3) 2 in aqueous solution and on the hexafluoridoplumbate(IV) [PbF 6 ] 2− ion in acetonitrile. Combined with new relativistic coupled cluster and relativistic density functional theory calculations of the shielding constant, we obtained a magnetic moment of μ(207 Pb) = 0.591 02 (18) μ N that is in clear disagreement with the tabulated value of +0.592 583(9) μ N. Similarly as in the case of 209 Bi this might be caused by an underestimated chemical shift in the aqueous solution of the nitrate. The consequences for a test of QED in strong magnetic fields by laser spectroscopy of the hyperfine splitting in Pb 81+ and for the magnetic moments of short-lived lead isotopes are discussed.
The dynamics of water confined in mesoporous MIP (2–3 nm pores in size) with silica gel (secondary silica; further, the abbreviation SG will be used) and MAP (10–35 nm pores in size) without SG borosilicate glasses have been studied by broadband dielectric spectroscopy (BDS), nuclear magnetic resonance (NMR), and differential scanning calorimetry (DSC). MIP samples contain secondary silica inside the pores and provide a confinement size of about 2–3 nm, whereas MAP samples are free of secondary silica and provide a confinement size of about 10–35 nm. It is shown by BDS and NMR techniques that water exhibits a dynamic crossover of around 180 K when it is confined in MIP samples. By contrast, water confined in larger pores (MAP) does not exhibit any changes in its relaxation behavior. It is also shown that the crossover temperature depends on the hydration level (the higher the hydration level, the lower the crossover temperature). Below the crossover temperature, we find that water reorientation is isotropic (NMR) and that the temperature-dependent dielectric relaxation strength (BDS) follows the tendency expected for a solid-like material. In contrast, water reorientation is related to long-range diffusion above the crossover temperature, and the dielectric relaxation strength follows the tendency expected for a liquid-like material. Furthermore, the calorimetric results are compatible with crossing a glass transition near 180 K. Finally, the results are discussed within the Gibbs–Thomson model. In this framework, the crossover could be related to ice crystals melting.
We use 2H nuclear magnetic resonance (NMR) to study water (D2O) reorientation and diffusion in the metal–organic framework MFU-4l, which features a regular three-dimensional network of nearly spherical pores with diameters of 1.2 and 1.9 nm. We observe that the rotational correlation times follow Vogel–Fulcher–Tammann and Arrhenius (Ea = 0.48 eV) relations above ∼225 K and below ∼170 K, respectively, whereas the temperature dependence continuously evolves from one to the other behavior in the broad crossover zone in between. In the common temperature range, the present NMR results are fully consistent with previous broadband dielectric spectroscopy (BDS) data on water (H2O) in a very similar framework. Several of our observations, e.g., rotational–translational coupling, indicate that a bulk-like structural (α) relaxation is observed above the crossover region. When cooling through the crossover zone, a quasi-isotropic reorientation mechanism is retained, while 2H spin-lattice relaxation evolves from exponential to nonexponential, implying that the water dynamics probed at low temperatures does no longer fully restore ergodicity on the time scale of this experiment. We discuss that the latter effect may result from bulk-like and/or confinement-imposed spatially heterogeneous water properties. Comparison with previous NMR and BDS results for water in other confinements reveals that, for confinement sizes around 2 nm, water reorientation depends more on the pore diameter than on the pore chemistry, while water diffusion is strongly affected by the connectivity and topology of the pores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.