The two different TOGL domains of the budding yeast CLASP Stu1 are responsible for its distinct mitotic activities, and these activities are only partially mediated by tight microtubule binding.
A new type of congenital disorders of glycosylation, designated CDG-Ip, is caused by the deficiency of GDP-Man:Man3GlcNAc2-PP-dolichol-alpha1,2-mannosyltransferase, encoded by the human ortholog of ALG11 from yeast. The patient presented with a multisystemic disorder characterized by muscular hypotonia, seizures, developmental retardation and death at the age of 2 years. The isoelectric focusing pattern of the patient's serum transferrin showed the partial loss of complete N-glycan side chains, which is a characteristic sign for CDG-I. Analysis of dolichol-linked oligosaccharides in patient-derived fibroblasts revealed an accumulation of Man3GlcNAc2-PP-dolichol and Man4GlcNAc2-PP-dolichol. Determination of mannosyltransferase activities of early steps of lipid-linked oligosaccharide biosynthesis in fibroblasts indicated that the patient was deficient in elongating Man3GlcNAc2-PP-dolichol. These findings gave rise to genetic analysis of the hALG11 cDNA, in which homozygosity for mutation c.T257C (p.L86S) was identified. Verification of the mutation as a primary cause for the genetic defect was proved by retroviral expression of human wild-type and mutated ALG11 cDNA in patient-derived fibroblasts as well as using a yeast alg11 deletion strain as a heterologous expression system for hALG11 variants. Immunofluorescence examinations combined with western blotting showed no differences of intracellular localization or expression of ALG11 between control and patient fibroblasts, respectively, indicating no mislocalization or degradation of the mutated transferase.
The biosynthesis of asparagine-linked glycans occurs in an evolutionarily conserved manner with the assembly of the unique lipid-linked oligosaccharide precursor Glc3Man9GlcNAc2-PP-Dol at the ER (endoplasmic reticulum). In the present study we characterize Alg11 from yeast as a mannosyltransferase catalysing the sequential transfer of two alpha1,2-linked mannose residues from GDP-mannose to Man3GlcNAc2-PP-Dol and subsequently to Man4GlcNAc2-PP-Dol forming the Man5GlcNAc2-PP-Dol intermediate at the cytosolic side of the ER before flipping to the luminal side. Alg11 is predicted to contain three hydrophobic transmembrane-spanning helices. Using Alg11 topology reporter fusion constructs, we show that only the N-terminal domain fulfils this criterion. Surprisingly, this domain can be deleted without disturbing glycosyltransferase function and membrane association, indicating also that the other two hydrophobic domains contribute to ER localization, but in a non-transmembrane manner. By site-directed mutagenesis we investigated amino acids important for transferase activity. We demonstrate that the first glutamate residue in the EX7E motif, conserved in a variety of glycosyltransferases, is more critical than the second, and loss of Alg11 function occurs only when both glutamate residues are exchanged, or when the mutation of the first glutamate residue is combined with replacement of another amino acid in the motif. This indicates that perturbations in EX7E are not restricted to the second glutamate residue. Moreover, Gly85 and Gly87, within a glycine-rich domain as part of a potential flexible loop, were found to be required for Alg11 function. Similarly, a conserved lysine residue, Lys319, was identified as being important for activity, which could be involved in the binding of the phosphate of the glycosyl donor.
Kinetochores that are not attached to microtubules prevent chromosome missegregation via the spindle assembly checkpoint. We show that they also promote their own capturing. Similar to what governs the localization of spindle assembly checkpoint proteins, the phosphorylation of Spc105 by Mps1 allows unattached kinetochores to sequester Stu1 in cooperation with Slk19. The withdrawal of Stu1, a CLASP essential for spindle integrity, from microtubules and attached kinetochores disrupts the organization of the spindle and thus allows the enhanced formation of dynamic random microtubules that span the nucleus and are ideal to capture unattached kinetochores. The enhanced formation of nuclear random microtubules does not occur if Stu1 sequestering to unattached kinetochores fails and the spindle remains uncompromised. Consequently, these cells exhibit a severely decreased capturing efficiency. After the capturing event, Stu1 is relocated to the capturing microtubule and prevents precocious microtubule depolymerization as long as kinetochores are laterally or incompletely end-on attached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.