A reduction in floral resource abundance and diversity is generally observed in agro-ecosystems, along with widespread exposure to pesticides. Therefore, a better understanding on how the availability and quality of pollen diets can modulate honeybee sensitivity to pesticides is required. For that purpose, we evaluated the toxicity of acute exposure and chronic exposures to field realistic and higher concentrations of azoxystrobin (fungicide) and sulfoxaflor (insecticide) in honeybees provided with pollen diets of differing qualities (named S and BQ pollens). We found that pollen intake reduced the toxicity of the acute doses of pesticides. Contrary to azoxystrobin, chronic exposures to sulfoxaflor increased by 1.5- to 12-fold bee mortality, which was reduced by pollen intake. Most importantly, the risk of death upon exposure to a high concentration of sulfoxaflor was significantly lower for the S pollen diet when compared with the BQ pollen diet. This reduced pesticide toxicity was associated with a higher gene expression of vitellogenin, a glycoprotein that promotes bee longevity, a faster sulfoxaflor metabolization and a lower concentration of the phytochemical p -coumaric acid, known to upregulate detoxification enzymes. Thus, our study revealed that pollen quality can influence the ability of bees to metabolize pesticides and withstand their detrimental effects, providing another strong argument for the restoration of suitable foraging habitat.
Reproductive strategies can act as strong selective forces on reproductive traits of male insects, resulting in species-specific variation in sperm quantity and viability. For solitary bees, basic measures of sperm quantity and viability are scarce. Here we evaluated for the first time quantity and viability of sperm in male Osmia cornuta solitary bees at different times after emergence, and how they were affected by male body mass and environmental condition (laboratory or semi-field arena). Sperm viability immediately after adult emergence showed no significant difference compared to four day old individuals, suggesting that O . cornuta males are capable of mating immediately post emergence. However, sperm counts were significantly higher in four day old individuals from the semi-field arena when compared to newly emerged males. This might reflect a final phase of sperm maturation. Regardless of individual male age and body mass differences, O . cornuta males produced on average ~175’000 spermatozoa that were ~65% viable, which are both significantly lower compared to eusocial honeybees and bumblebees. Moreover, sperm quantity, but not viability, was positively correlated with male body mass four days after emergence, while no such relationship was detected immediately after emergence. Even though individuals maintained in semi-field conditions exhibited a significantly greater loss of body mass, experimental arena had no significant effect on male survival, sperm quality or total living sperm produced. This suggests that the proposed laboratory design provides a cost-efficient and simple experimental approach to assess sperm traits in solitary bees. In conclusion, our data suggest a reduced investment in both sperm quantity and quality by male O . cornuta , which appears to be adaptive in light of the life history of this solitary bee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.