Aim: Amplitude-integrated electroencephalography (aEEG) is used to monitor electrocortical activity in critically ill children, but reference values are lacking for patients older than 3.5 months. We aimed to derive reference values for paediatric aEEGs from neurologically healthy children. Methods: Normal EEGs from awake children aged 1 month to 17 years (213 female, 237 male) without neurological disease or neuroactive medication were retrospectively converted into aEEGs. Two observers manually measured the upper and lower amplitude borders of the C3 - P3, C4 - P4, C3 - C4, P3 - P4, and Fp1 - Fp2 channels of the 10 - 20 system. Percentiles (10th, 25th, 50th, 75th, 90th) were calculated for each age group (< 1 year, 1 year, 2 - 5 years, 6 - 9 years, 10 - 13 years, 14 - 17 years). Results: Amplitude heights and curves differed between channels without sex-specific differences. During the first 2 years of life, upper and lower amplitudes of all but the Fp1 - Fp2 channel increased and then declined until 17 years. The decline of the upper Fp1 - Fp2 amplitude began at four years, while the lower amplitude declined from the first year of life. Interpretation: aEEG interpretation must account for age and electrode positions but not for sex in infants and children.
Introduction: Interpretation of pediatric amplitude-integrated EEG (aEEG) is hindered by the lack of knowledge on physiological background patterns in children. The aim of this study was to assess the amplitudes and bandwidths of background patterns during wakefulness and sleep in children from long-term EEGs. Methods: Forty long-term EEGs from patients < 18 years of age without or only solitary interictal epileptiform discharges were converted into aEEGs. Upper and lower amplitudes (μV) of the C3 - C4, P3 - P4, C3 - P3, C4 - P4, and Fp1 - Fp2 channels were measured during wakefulness and sleep. Bandwidths (BW, μV) were calculated, and sleep states assessed during the episodes of interest. A sensitivity analysis excluded patients who received antiepileptic drugs. Results: Median age was 9.9 years (interquartile range 6.1 - 14.7). All patients displayed continuous background patterns. Amplitudes and BW differed between wakefulness (C3 - C4 channel: upper 35 (27 - 49), lower 13 (10 - 19), BW 29 (21 - 34)) and sleep. During sleep, episodes with high amplitudes (upper 99 (71 - 125), lower 35 (25 - 44), BW 63 (44 - 81)) corresponded to sleep states N2 - N4. These episodes were interrupted by low amplitudes that were the dominating background pattern towards the morning (upper 39 (30 - 51), lower 16 (11 - 20), BW 23 (19 - 31), sleep states REM, N1, and N2). With increasing age, amplitudes and bandwidths declined. The sensitivity analysis yielded no differences in amplitude values or bandwidths. Conclusion: aEEG amplitudes and bandwidths were low during wakefulness and light sleep and high during deep sleep in stable children undergoing 24 hour EEG recordings. aEEG values were not altered by antiepileptic drugs in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.