Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have surprisingly fast input-output properties: rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na+) and potassium (K+) currents in human pyramidal neurons can explain their fast input-output properties. Human Na+ and K+ currents had depolarized voltage-dependence, slower inactivation and exhibited a faster recovery from inactivation than their mouse counterparts. Computational modeling showed that despite lower Na+ channel densities in human neurons, the biophysical properties of Na+ channels resulted in higher channel availability and contributed to fast AP kinetics stability. Finally, human Na+ channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na+ and K+ channels enable fast input-output properties of large human pyramidal neurons.
In rodent cortical networks, fast spiking interneurons (FSINs) provide fast inhibition that synchronizes neuronal activity and is critical for cognitive function. Fast synchronization frequencies are evolutionary conserved in the expanded human neocortex, despite larger neuron-to-neuron distances that challenge fast input-output transfer functions of FSINs. Here, we test which mechanistic specializations of large human FSINs explain their fast-signaling properties in human cortex. With morphological reconstructions, multi-patch recordings, and biophysical modeling we find that despite three-fold longer dendritic path lengths, human FSINs maintain fast inhibition between connected pyramidal neurons through several mechanisms: stronger synapse strength of excitatory inputs, larger dendrite diameter with reduced complexity, faster AP initiation, and faster and larger inhibitory output, while Na+ current activation /inactivation properties are similar. These adaptations underlie short input-output delays in fast inhibition of human pyramidal neurons through FSINs, explaining how cortical synchronization frequencies are conserved despite expanded and sparse network topology of human cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.