MicroRNAs (miRNAs) are a large family of small non-coding RNAs which negatively control gene expression at both the mRNA and protein levels. The number of miRNAs identified is growing rapidly and approximately one-third is expressed in the brain where they have been shown to affect neuronal differentiation, synaptosomal complex localization and synapse plasticity, all functions thought to be disrupted in schizophrenia. Here we investigated the expression of 667 miRNAs (miRBase v.13) in the prefrontal cortex of individuals with schizophrenia (SZ, N=35) and bipolar disorder (BP, N=35) using a real-time PCR-based Taqman Low Density Array (TLDA). After extensive QC steps, 441 miRNAs were included in the final analyses. At a FDR of 10%, 22 miRNAs were identified as being differentially expressed between cases and controls, 7 dysregulated in SZ and 15 in BP. Using in silico target gene prediction programs, the 22miRNAs were found to target brain specific genes contained within networks overrepresented for neurodevelopment, behavior, and SZ and BP disease development. In an initial attempt to corroborate some of these predictions, we investigated the extent of correlation between the expressions of hsa-mir-34a, -132 and -212 and their predicted gene targets. mRNA expression of tyrosine hydroxylase (TH), phosphogluconate dehydrogenase (PGD) and metabotropic glutamate receptor 3 (GRM3) was measured in the SMRI sample. Hsa-miR-132 and -212 were negatively correlated with TH (p=0.0001 and 0.0017) and with PGD (p=0.0054 and 0.017, respectively).
Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05). Cell-type-specific transcriptome analyses revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four mRNA modules were enriched for astrocyte and microglial specific marker genes and upregulated in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in processes related to immune functions, i.e. cytokine signaling (all adj. p≤ 0.05). In mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected biological functions of miRNAs, correlation analyses between mRNA and miRNA hub genes revealed a higher number of positive than negative correlations (χ2 test p≤ 0.0001). Integration of hub gene expression with genome-wide genotypic data resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were significantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024, respectively) in AD GWAS signals in a large, independent genetic sample from the Collaborative Study on Genetics of Alcohol (COGA). In conclusion, our study identified putative gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD.
Nicotinic acetylcholine receptors bind to nicotine and initiate the physiological and pharmacological responses to tobacco smoking. In this report, we studied the association of α5 and α3 subunits with nicotine dependence and with the symptoms of alcohol and cannabis abuse and dependence in two independent epidemiological samples (n = 815 and 1,121, respectively). In this study, seven single nucleotide polymorphisms were genotyped in the CHRNA5 and CHRNA3 genes. In both samples, we found that the same alleles of rs16969968 (P = 0.0068 and 0.0028) and rs1051730 (P = 0.0237 and 0.0039) were significantly associated with the scores of Fagerström test for nicotine dependence (FTND). In the analyses of the symptoms of abuse/dependence of alcohol and cannabis, we found that rs16969968 and rs1051730 were significantly associated with the symptoms of alcohol abuse or dependence (P = 0.0072 and 0.0057) in the combined sample, but the associated alleles were the opposite of that of FTND. No association with cannabis abuse/ dependence was found. These results suggested that the α5 and α3 subunits play a significant role in both nicotine dependence and alcohol abuse/dependence. However, the opposite effects with nicotine dependence and alcohol abuse/dependence were puzzling and future studies are necessary to resolve this issue.
MicroRNAs (miRNAs) are small non-coding RNAs that mainly function as negative regulators of gene expression (Lai, 2002) and have been shown to be involved in schizophrenia etiology through genetic and expression studies (Burmistrova et al., 2007; Hansen et al., 2007a; Perkins et al., 2007; Beveridge et al., 2010; Kim et al., 2010). In a mega analysis of genome-wide association study (GWAS) of schizophrenia (SZ) and bipolar disorders (BP), a polymorphism (rs1625579) located in the primary transcript of a miRNA gene, hsa-miR-137, was reported to be strongly associated with SZ. Four SZ loci (CACNA1C, TCF4, CSMD1, C10orf26) achieving genome-wide significance in the same study were predicted and later experimentally validated (Kwon et al., 2011) as hsa-miR-137 targets. Here, using in silico, cellular and luciferase based approaches we also provide evidence that another well replicated candidate schizophrenia gene, ZNF804A, is also target for hsa-miR-137.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.