A model is proposed for the mechanism of flocculation interactions in yeasts in which flocculent cells have a recognition factor which attaches to a-mannan sites on other cells. This factor may be governed by the expression of the single, dominant gene FLO]. Isogenic strains of Saccharomyces cerevisiae, differing only at FLO] and the marker genes adel and trpl, were developed to examine the components involved in flocculence. Electron microscopy and concanavalin Aferritin labeling of aggregated cells showed that extensive and intense interactions between cell wall mannan layers mediated cell aggregation. The components of the mannan layer essential for flocculence were Ca21 ions, a-mannan carbohydrates, and proteins. By studying the divalent cation dependence at various pH values and in the presence of competing monovalent cations, flocculation was found to be Ca2' dependent; however, Mg2+ and Mn2+ ions substituted for Ca2+ under certain conditions. Reversible inhibition of flocculation by concanavalin A and succinylated concanavalin A implicated a-branched mannan carbohydrates as one essential component which alone did not determine the strain specificity of flocculence, since nonflocculent strains interacted with and competed for binding sites on flocculent cells. FLO] may govern the expression of a proteinaceous, lectin-like activity, firmly associated with the cell walls of flocculent cells, which bind to the a-mannan carbohydrates of adjoining cells. It was selectively and irreversibly inhibited by proteolysis and reduction of disulfide bonds. The potential of this system as a model for the genetic and biochemical control of cellcell interactions is discussed.
We have isolated and characterized a stable epithelial cell line from Muta Mouse lung that is a suitable complement to the in vivo assay system. The cells are contact inhibited, forming a flat monolayer, and retain several epithelial/pulmonary characteristics. The genome is stable across more than 50 generations, with a modal chromosome number of 78. Spontaneous rates of micronuclei (19.2 +/- 1.4 per 1,000), sister chromatid exchanges (0.25 +/- 0.004 per chromosome), and chromosome aberrations ( approximately 4%) are lower than, or comparable to, other transgenic cell lines currently used in mutagenicity research. Fluorescence in situ hybridization analyses showed that 80% of cells contain three lambdagt10lacZ loci. Slot-blot analyses indicated that the average cell contains approximately 17 transgene monomers. Spontaneous mutant frequency at the lacZ transgene is stable (39.8 +/- 1.1 x 10(-5)), and the direct-acting mutagens N-ethyl-N-nitrosourea and ICR-191 yielded increases in mutant frequency of 6.3- and 3.2-fold above control, respectively. Benzo[a]pyrene (BaP) exposure increased mutant frequency more than 25-fold above control and did not require an exogenous metabolic activation mixture. Inhibition of Cyp1A1 by 5 microM alpha-naphthoflavone eliminated BaP mutagenesis. Activation and mutation induction by the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine required a low concentration (0.05% v/v) of exogenous rat liver S9. High activity of alpha, micro, and pi glutathione-S-transferase isozymes appears to confer resistance to the cytotoxic effects of xenobiotics. The cell line is a suitable complement to the in vivo Muta Mouse assay, and provides an opportunity for routine in vitro mutagenicity testing using an endpoint that is identical to that employed in vivo.
The biological control of flocculation interactions by factors related to growth under different conditions of aeration was documented with a new assay for flocculence. The degree of flocculence expressed in a genetically defined Saccharomyces cerevisiae strain (FLO1/FLO1 ade1/ade1) remained constant during aerobic growth but varied with aeration. Flocculence was repressed in anaerobically growing cells but was induced in stationary cells or cells returned to aerobic growth. Repression was correlated with the selective inactivation of cell surface lectin-like components. The changes in flocculence were accompanied by changes in 16 extractable proteins separated by electrophoresis; however, a clear correlation between specific protein bands and flocculence could not be established. The study clearly demonstrated that the phenotypic expression of FLO1 could be reproducibly manipulated for experimental purposes by aeration alone.
The nucleotide sequence of the portion of a Bacillus subtilis (strain PAP115) 3 kb Pst I fragment which contains an endo-beta-1, 4-glucanase gene has been determined. This gene encodes a protein of 499 amino acid residues (Mr = 55,234) with a typical B. subtilis signal peptide. Escherichia coli which has been transformed with this gene produces an extracellular endoglucanase with an amino-terminus corresponding to the thirtieth encoded amino acid residue. The gene is preceded by a cryptic reading frame with a rho-independent terminator structure, and itself has such a structure in the immediate 3'-flanking region. We have also identified, in the 5'-flanking region, nucleotide sequences which resemble promoter elements recognized by Bacillus RNA polymerase E sigma 43. Comparison of the encoded amino acid sequence to other known beta-glucanases reveals a small region of similarity to the encoded protein of the Clostridium thermocellum celB gene. These similar regions may contain substrate-binding and/or catalytic sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.