The CWRF is developed as a climate extension of the Weather Research and Forecasting model (WRF) by incorporating numerous improvements in the representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions between land, atmosphere, and ocean; convection and microphysics; and cloud, aerosol, and radiation; and system consistency throughout all process modules. This extension inherits all WRF functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, CWRF can be applied seamlessly to weather forecast and climate prediction. The CWRF is built with a comprehensive ensemble of alternative parameterization schemes for each of the key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty estimate. The CWRF also emphasizes the societal service capability to provide impactrelevant information by coupling with detailed models of terrestrial hydrology, coastal ocean, crop growth, air quality, and a recently expanded interactive water quality and ecosystem model. This study provides a general CWRF description and basic skill evaluation based on a continuous integration for the period 1979– 2009 as compared with that of WRF, using a 30-km grid spacing over a domain that includes the contiguous United States plus southern Canada and northern Mexico. In addition to advantages of greater application capability, CWRF improves performance in radiation and terrestrial hydrology over WRF and other regional models. Precipitation simulation, however, remains a challenge for all of the tested models.
Abstract. Multi-platform and multi-sensor observations are employed to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective systems. For a given convective strength, small hydrometeors were more prevalent in the stratiform rain regions with dust than in those regions that were dust free. Evidence of abundant cloud ice particles in the dust sector, particularly at altitudes where heterogeneous nucleation of mineral dust prevails, further supports the observed changes of precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the precipitation size spectrum from heavy precipitation to light precipitation and ultimately suppressing precipitation.
Multi-platform and multi-sensor observations are employed to investigate the impact of mineral dust on cloud microphysical and precipitation processes in mesoscale convective systems. It is clearly evident that for a given convection strength,small hydrometeors were more prevalent in the stratiform rain regions with dust than in those regions 5 that were dust free. Evidence of abundant cloud ice particles in the dust sector, particularly at altitudes where heterogeneous nucleation process of mineral dust prevails, further supports the observed changes of precipitation. The consequences of the microphysical effects of the dust aerosols were to shift the precipitation size spectrum from heavy precipitation to light precipitation and ultimately suppressing precipitation. 10 25 sation nuclei (CCN) concentration (Andreae et al.Abstract Introduction Conclusions References Tables ACPD Abstract Introduction Conclusions References Tables ACPD Abstract Introduction Conclusions Abstract Introduction Conclusions Abstract Introduction Conclusions Abstract Introduction Conclusions Abstract Introduction Conclusions Abstract Introduction Conclusions Abstract Introduction Conclusions Abstract Introduction Conclusions Abstract Introduction Conclusions Abstract Introduction Conclusions References Tables
The Joint Polar Satellite System (JPSS) Cross‐track Infrared Microwave Sounder Suite (CrIMSS) is an advanced operational satellite sounding system concept comprised of the Cross‐track Infrared Sounder and the Advanced Technology Microwave Sounder. These are synergistically designed to retrieve key environmental data records (EDR), namely atmospheric vertical temperature, moisture, and pressure profiles. CrIMSS will serve as the low‐Earth orbit satellite sounding system, starting with the Suomi National Polar‐orbiting Partnership (S‐NPP) satellite and spanning the JPSS‐1 and JPSS‐2 satellites. This paper organizes the general paradigm for validation of atmospheric profile EDR retrieved from satellite nadir sounder systems (e.g., CrIMSS) as a synthesis of complementary methods and statistical assessment metrics. The validation methodology is ordered hierarchically to include global numerical model comparisons, satellite EDR intercomparisons, radiosonde matchup assessments (conventional, dedicated, and reference), and intensive campaign “dissections.” We develop and recommend the proper approach for computing profile statistics relative to correlative data derived from high‐resolution in situ data (viz., radiosondes) reduced to forward model layers. The standard statistical metrics used for EDR product assessments on “coarse layers” are defined along with an overview of water vapor weighting schemes and the use of averaging kernels. We then overview the application of the methodology to CrIMSS within the context of the JPSS calibration/validation program, with focus given to summarizing the core data sets to be used for validation of S‐NPP sounder EDR products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.