Background Many aspects of our lives are now digitized and connected to the internet. As a result, individuals are now creating and collecting more personal data than ever before. This offers an unprecedented chance for human-participant research ranging from the social sciences to precision medicine. With this potential wealth of data comes practical problems (e.g., how to merge data streams from various sources), as well as ethical problems (e.g., how best to balance risks and benefits when enabling personal data sharing by individuals). Results To begin to address these problems in real time, we present Open Humans, a community-based platform that enables personal data collections across data streams, giving individuals more personal data access and control of sharing authorizations, and enabling academic research as well as patient-led projects. We showcase data streams that Open Humans combines (e.g., personal genetic data, wearable activity monitors, GPS location records, and continuous glucose monitor data), along with use cases of how the data facilitate various projects. Conclusions Open Humans highlights how a community-centric ecosystem can be used to aggregate personal data from various sources, as well as how these data can be used by academic and citizen scientists through practical, iterative approaches to sharing that strive to balance considerations with participant autonomy, inclusion, and privacy.
Health-related data analysis plays an important role in self-knowledge, disease prevention, diagnosis, and quality of life assessment. With the advent of data-driven solutions, a myriad of apps and Internet of Things (IoT) devices (wearables, home-medical sensors, etc) facilitates data collection and provide cloud storage with a central administration. More recently, blockchain and other distributed ledgers became available as alternative storage options based on decentralised organisation systems. We bring attention to the human data bleeding problem and argue that neither centralised nor decentralised system organisations are a magic bullet for data-driven innovation if individual, community and societal values are ignored. The motivation for this position paper is to elaborate on strategies to protect privacy as well as to encourage data sharing and support open data without requiring a complex access protocol for researchers. Our main contribution is to outline the design of a self-regulated Open Health Archive (OHA) system with focus on quality of life (QoL) data.
Data centres that use consumer-grade disks drives and distributed peer-to-peer systems are unreliable environments to archive data without enough redundancy. Most redundancy schemes are not completely effective for providing high availability, durability and integrity in the long-term. We propose alpha entanglement codes, a mechanism that creates a virtual layer of highly interconnected storage devices to propagate redundant information across a large scale storage system. Our motivation is to design flexible and practical erasure codes with high faulttolerance to improve data durability and availability even in catastrophic scenarios. By "flexible and practical", we mean code settings that can be adapted to future requirements and practical implementations with reasonable trade-offs between security, resource usage and performance. The codes have three parameters. Alpha increases storage overhead linearly but increases the possible paths to recover data exponentially. Two other parameters increase fault-tolerance even further without the need of additional storage. As a result, an entangled storage system can provide high availability, durability and offer additional integrity: it is more difficult to modify data undetectably. We evaluate how several redundancy schemes perform in unreliable environments and show that alpha entanglement codes are flexible and practical codes. Remarkably, they excel at code locality, hence, they reduce repair costs and become less dependent on storage locations with poor availability. Our solution outperforms Reed-Solomon codes in many disaster recovery scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.