DNA methylation of tumor suppressor genes is a frequent mechanism of transcriptional silencing in cancer. The molecular mechanisms underlying the specificity of methylation are unknown. We report here that the leukemia-promoting PML-RAR fusion protein induces gene hypermethylation and silencing by recruiting DNA methyltransferases to target promoters and that hypermethylation contributes to its leukemogenic potential. Retinoic acid treatment induces promoter demethylation, gene reexpression, and reversion of the transformed phenotype. These results establish a mechanistic link between genetic and epigenetic changes during transformation and suggest that hypermethylation contributes to the early steps of carcinogenesis.
The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F, and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs (snRNAs). These proteins share a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. Crystal structures of two Sm protein complexes, D3B and D1D2, show that these proteins have a common fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta sheet, and the D1D2 and D3B dimers superpose closely in their core regions, including the dimer interfaces. The crystal structures suggest that the seven Sm proteins could form a closed ring and the snRNAs may be bound in the positively charged central hole.
Correlative evidence links stress, accumulation of oxidative cellular damage and ageing in lower organisms and in mammals. We investigated their mechanistic connections in p66Shc knockout mice, which are characterized by increased resistance to oxidative stress and extended life span. We report that p66Shc acts as a downstream target of the tumour suppressor p53 and is indispensable for the ability of stress-activated p53 to induce elevation of intracellular oxidants, cytochrome c release and apoptosis. Other functions of p53 are not in¯uenced by p66Shc expression. In basal conditions, p66Shc7/7 and p537/7 cells have reduced amounts of intracellular oxidants and oxidation-damaged DNA. We propose that steady-state levels of intracellular oxidants and oxidative damage are genetically determined and regulated by a stress-induced signal transduction pathway involving p53 and p66Shc.
Stable association of the eight common Sm proteins with U1, U2, U4 or U5 snRNA to produce a spliceosomal snRNP core structure is required for snRNP biogenesis, including cap hypermethylation and nuclear transport. Here, the assembly of snRNP core particles was investigated in vitro using both native HeLa and in vitro generated Sm proteins. Several RNA‐free, heteromeric protein complexes were identified, including E.F.G, B/B’.D3 and D1.D2.E.F.G. While the E.F.G complex alone did not stably bind to U1 snRNA, these proteins together with D1 and D2 were necessary and sufficient to form a stable U1 snRNP subcore particle. The subcore could be chased into a core particle by the subsequent addition of the B/B’.D3 protein complex even in the presence of free competitor U1 snRNA. Trimethylation of U1 snRNA's 5′ cap, while not observed for the subcore, occurred in the stepwise‐assembled U1 snRNP core particle, providing evidence for the involvement of the B/B′ and D3 proteins in the hypermethylation reaction. Taken together, these results suggest that the various protein heterooligomers, as well as the snRNP subcore particle, are functional intermediates in the snRNP core assembly pathway.
P66Shc regulates life span in mammals and is a critical component of the apoptotic response to oxidative stress. It functions as a downstream target of the tumor suppressor p53 and is indispensable for the ability of oxidative stress-activated p53 to induce apoptosis. The molecular mechanisms underlying the apoptogenic effect of p66Shc are unknown. Here we report the following three findings. (i) The apoptosome can be properly activated in vitro in the absence of p66Shc only if purified cytochrome c is supplied. (ii) Cytochrome c release after oxidative signals is impaired in the absence of p66Shc. (iii) p66Shc induces the collapse of the mitochondrial trans-membrane potential after oxidative stress. Furthermore, we showed that a fraction of cytosolic p66Shc localizes within mitochondria where it forms a complex with mitochondrial Hsp70. Treatment of cells with ultraviolet radiation induced the dissociation of this complex and the release of monomeric p66Shc. We propose that p66Shc regulates the mitochondrial pathway of apoptosis by inducing mitochondrial damage after dissociation from an inhibitory protein complex. Genetic and biochemical evidence suggests that mitochondria regulate life span through their effects on the energetic metabolism (mitochondrial theory of aging). Our data suggest that mitochondrial regulation of apoptosis might also contribute to life span determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.