Areas with abundant sunlight, such as the Middle East and North Africa (MENA), are optimal for photovoltaic (PV) power generation. However, the average power loss of photovoltaic modules caused by dust accumulation is extreme and may reach 1%/day, necessitating frequent cleaning which adds to the cost of operations and maintenance. One of the solutions to the problem of PV soiling is to develop anti-soil coatings, where hydrophilic or hydrophobic coatings with spectral characteristics suitable for PV applications are added to the outer layer of PV glass. However, the effectiveness of such coatings depends extensively on climatic conditions and geographical locations. Since coatings add to the cost of solar panels, it is imperative that they are first tested for suitability at the intended location and/or in similar weather conditions prior to their large-scale deployment. This critical review focuses on various anti-dust technologies employed to mitigate the PV soiling issue. The in-depth comparison of the various developed techniques and materials aims at providing a relevant input in adapting the right technology based on particles’ accumulation mechanism, weather conditions, and geographical location. Though the mechanical cleaning process is the most used solution to date, development of thin film anti-dust coating could be a better alternative—when it is relevant—due to its abrasion-free capability, large deployment, economic viability, and durability. This review aims at serving as a reference in this topic, thereby paving the way to adapting efficient anti-dust coatings, especially in the MENA region and/or desert environment at large, where it is the most relevant.
We report on the optical and morphological properties of silica thin layers deposited by reactive RF magnetron sputtering of a SiO 2 target under different oxygen to total flow ratios [r(O 2 ) = O 2 /Ar, ranging from 0 to 25%]. The refractive index (n), extinction coefficient, total transmission, and total reflectance were systematically investigated, while field-emission scanning electron microscopy, atomic force microscopy, and threedimensional (3D) average roughness data construction measurements were carried out to probe the surface morphology. Contact angle measurements were performed to assess the hydrophilicity of our coatings as a function of the oxygen content. We performed a thorough numerical analysis using 1D-solar cell capacitance simulator (SCAPS-1D) based on the measured experimental optical properties to simulate the photovoltaic (PV) device performance, where a clear improvement in the photoconversion efficiency from 25 to 26.5% was clearly observed with respect to r(O 2 ). Finally, a computational analysis using OptiLayer confirmed a minimum total reflectance of less than 0.4% by coupling a silica layer with n = 1.415 with another high-refractive-index (i.e., >2) oxide layer. These promising results pave the way for optimization of silica thin films as efficient antireflection and self-cleaning coatings to display better PV performance in a variety of locations including a desert environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.