The photosynthetic pigments are mainly responsible for absorbing the light intended to promote photosynthesis on the chloroplast of the leaves. Different studies have related the spectral response in the leaves of plants with the biotic stress generated by pathogens. In general, maximum differences in reflectance have been found in the range of 380–750 nm between plants subjected to biotic stress and healthy plants. In this study, it was possible to characterize and relate the spectral variance in leaves of S. lycopersicum infected with F. oxysporum with this physiological variation and pathogen concentration in tomato plants during the asymptomatic period of vascular wilt. Photosynthetic parameters derived from gaseous exchange analysis in the tomato leaves correlated related with four bands in the visible range (Vis). Additionally, five specific bands also present a high correlation with the increase in the concentration of F. oxysporum conidia measured at the root: 448–523 nm, 624–696 nm, 740–960 nm, 973–976 nm, and 992–995 nm. These wavelengths allowed a 100% correct classification of the plants inoculated with F. oxysporum from the plants subjected to hydric stress and the control plants in the asymptomatic period of the disease. The spectral response to biotic and abiotic stress in the measured Vis/NIR range can be explained by the general tendency to change the concentration of chlorophyll and carotene in tomato leaves. These studies also highlight the importance of the implementation of robust multivariate analysis over the multiple univariate analysis used in the applied biological sciences and specifically in the agricultural sciences. These results demonstrate that specific wavelength responses are due to physiological changes in plants subjected to stress, and can be used in indexes and algorithms applied to the early detection of diseases in plants on different pathosystems.
The relevance of cycling as a mode of transportation is increasingly being recognized in many cities around the world, and the city of Medellin (Colombia) is no exception. To better understand cycling travel behavior in Medellin, we perform a multiple regression to analyze the importance of route characteristics in explaining cycling travel distance. We control for socioeconomic and built environment variables at the origin and destination. Our results reveal that the effects of the socio-economic and built environment characteristics at the origin and destination are modest or statistically insignificant in explaining travel distance. However, the variables that characterize the built and natural environment along the route are significant and appreciably improve the explanatory power of the baseline econometric model. An analysis of interacting effects shows that the interaction between the dedicated infrastructure along the route and the degree of deviation from direct routes has a relevant effect on explaining travel distance. The findings of this work are useful for designing cycling policy and developing more usable cycling infrastructure.
Las plantas asintomáticas son reservorios de patógenos, ya que pueden permanecer infectadas la mayor parte de su ciclo de desarrollo, convirtiéndose en fuente de contaminación para el resto del cultivo. El objetivo de este estudio fue evaluar un método de detección y discriminación de dos cepas de Fusarium oxysporum en tomate usando espectroscopia. La enfermedad en las plantas de tomate inoculadas con la cepa aislada de gulupa (F05) fue mayor a la observada en la cepa aislada de tomate (F07), presentando valores de 60,0% (11 días) y 81,8% (22 días); la cepa F07 presentó incidencias de 30,0 y 64,3% en ambas mediciones. La planta infectada con la cepa F05 fue mejor discriminada en el periodo de incubación de la enfermedad en ambos periodos de tiempo en los Análisis de Componentes Principales (PCA) y Análisis Discriminantes Lineales (LDA) realizados con los controles en comparación con la cepa F07. Estos resultados sugieren que la espectroscopia de reflectancia VIS es un método sensible y confiable que puede ser adecuado para el diagnóstico temprano de enfermedades en plantas.
La deforestación tropical es un proceso continuo causado principalmente por la construcción de nuevas vías, las cuales sin una planificación ambiental adecuada contribuyen a la pérdida de biodiversidad. Dado que las redes neuronales artificiales (RNAs) tienen la capacidad de capturar relaciones no lineales, se utilizaron para predecir la deforestación asociada a nuevas vías, como la Variante Porce y la vía El Bagre-San Jacinto del Cauca, en el departamento de Antioquia. El entrenamiento de las RNAs se realizó en modo on line con el algoritmo de retropropagación, en el software R. La capacidad de predicción se evaluó con el área bajo la curva ROC (AUC) y con la red que presentó mejor capacidad predictiva se generó la superficie de deforestación para el escenario base y el escenario simulado incorporando las nuevas vías. La comparación de escenarios indica que las nuevas vías incrementarían la probabilidad de deforestación de aproximadamente 103.729 ha de bosque.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.