Root performance represents a target factor conditioning plant development under drought conditions. Moreover, recent root phenotyping studies remark relevant differences on functionality of the different root types. However, despite its relevance, the performance of different types of roots such as primary/taproot (tapR) and lateral/fibrous roots (fibR) under water stress conditions is largely unknown. In the current study, the impact of water stress on target C and N metabolism (namely sucrose and proline) processes were characterized in tapR and fibR of Medicago truncatula plants exposed to different water stress severity regimes (moderate versus severe). While both root types exhibit some common responses to face water stress, the study highlighted important physiological and metabolic differences between them.The tapR proved to have an essential role on carbon and nitrogen partitioning rather than just on storage. Moreover, this root type showed a higher resilience towards water deficit stress.Sucrose metabolization at sucrose synthase level was early blocked in this tissue together with a selective accumulation of some amino acids such as proline and branched chain amino acids, which may act as alternative carbon sources under water deficit stress conditions. The decline in respiration, despite the over-accumulation of carbon compounds, suggests a modulation at sucrose cleavage level by sucrose synthase and invertase. These data not only provide new information on the carbon and nitrogen metabolism modulation upon water deficit stress but also on the different role, physiology, and metabolism of the taproot and fibrous roots. In addition, obtained results highlight the fact that both root types show distinct performance under water deficit stress; this factor can be of great relevance to improve breeding programs for increasing root efficiency under adverse conditions.
Red pigmentation in the lower surface of leaves is a common phenomenon in herb species growing in temperate and tropical forests. Nevertheless, its function is still not completely understood. We studied this process of reddening in the leaves of Saxifraga hirsuta living in a beech forest, to establish its relation with environmental factors and its potential function. We observed that the reddening occurs during autumn and that it strongly reduces the amount of light that can pass through the leaf. The dark environment generated underneath might play a role in the biotic interactions by inhibiting vital processes of competitors.
Legumes, account for around 27% of the world's primary crop production and can be classified based on their use and traits into grain and forage legumes. Legumes can establish symbiosis with N-fixing soil
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.