Phaeochromocytoma and paraganglioma (PHEO/PGL) are rare tumours with an estimated annual incidence of 3 per million. Advances in molecular understanding have led to the recognition that at least 30–40% arise in the setting of hereditary disease. Germline mutations in the succinate dehydrogenase genes SDHA, SDHB, SDHC, SDHD and SDHAF2 are the most prevalent of the more than 19 hereditary genetic abnormalities which have been reported. It is therefore recommended that, depending on local resources and availability, at least some degree of genetic testing should be offered to all PHEO/PGL patients, including those with clinically sporadic disease. It is now accepted that that all PHEO/PGL have some metastatic potential; therefore, concepts of benign and malignant PHEO/PGL have no meaning and have been replaced by a risk stratification approach. Although there is broad acceptance that certain features, including high proliferative activity, invasive growth, increased cellularity, large tumour nests and comedonecrosis, are associated with an increased risk of metastasis, it remains difficult to predict the clinical behaviour of individual tumours and no single risk stratification scheme is endorsed or in widespread use. In this review, we provide an update on advances in the pathology and genetics of PHEO/PGL with an emphasis on the changes introduced in the WHO 2017 classification of endocrine neoplasia relevant to practising surgical pathologists.
The gene CDC73 (previously known as HRPT2) encodes the protein parafibromin. Biallelic mutation of CDC73 is strongly associated with malignancy in parathyroid tumors. Heterozygous germline mutations cause hyperparathyroidism jaw tumor syndrome,which is associated with a high life-time risk of parathyroid carcinoma. Therefore loss of parafibromin expression by immunohistochemistry may triage genetic testing for hyperparathyroidism jaw tumor syndrome and be associated with malignant behavior in atypical parathyroid tumors. We share our experience that parafibromin-negative parathyroid tumors show distinctive morphology. We searched our institutional database for parathyroid tumors demonstrating complete loss of nuclear expression of parafibromin with internal positive controls. Forty-three parafibromin-negative tumors from 40 (5.1%) of 789 patients undergoing immunohistochemistry were identified. Thirty-three (77%) were external consultation cases; the estimated incidence in unselected tumors was 0.19%. Sixteen (37.2%) fulfilled World Health Organization 2017 criteria for parathyroid carcinoma and 63% had serum calcium greater than 3mmol/L. One of 27 (3.7%) noninvasive but parafibromin-negative tumors subsequently metastasized. Parafibromin-negative patients were younger (mean, 36 vs. 63 y; P<0.001) and had larger tumors (mean, 3.04 vs. 0.62 g; P<0.001). Not all patients had full testing, but 26 patients had pathogenic CDC73 mutation/deletions confirmed in tumor (n=23) and/or germline (n=16). Parafibromin-negative tumors demonstrated distinctive morphology including extensive sheet-like rather than acinar growth, eosinophilic cytoplasm, nuclear enlargement with distinctive coarse chromatin, perinuclear cytoplasmic clearing, a prominent arborizing vasculature, and, frequently, a thick capsule. Microcystic change was found in 21 (48.8%). In conclusion, there are previously unrecognized morphologic clues to parafibromin loss/CDC73 mutation in parathyroid tumors which, given the association with malignancy and syndromic disease, are important to recognize.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.
Pancreatic neuroendocrine tumours (PanNETs) are rare neoplasms accounting for 1-2% of all pancreatic tumours. The biological behaviour of PanNETs is heterogeneous and unpredictable, adding to the difficulties of clinical management. The DAXX (death domain associated protein) and ATRX (alpha-thalassemia/mental retardation syndrome X-linked) genes encode proteins involved in SWI/SNF-like chromatin remodelling. Somatic inactivating mutations in DAXX and ATRX are frequent in PanNETs, mutually exclusive, and associated with telomere dysfunction resulting in genomic instability and alternate lengthening of telomeres. We sought to assess the clinical significance of the loss of the ATRX and DAXX proteins as determined by immunohistochemistry (IHC) in patients with PanNET. From an unselected cohort of 105 patients, we found ATRX loss in 10 tumours (9.5%) and DAXX loss in 16 (15.2%). DAXX and ATRX loss were confirmed mutually exclusive and associated with other adverse clinicopathological variables and poor survival in univariate analysis. In addition ATRX loss was also associated with higher AJCC stage and infiltrative tumour borders. However only ATRX loss, lymphovascular invasion and perineural spread were independent predictors of poor overall survival in multivariate analysis. In conclusion, loss of expression of ATRX as determined by IHC is a useful independent predictor of poor overall survival in PanNETs. Given its relative availability, ATRX loss as determined by IHC may have a role in routine clinical practice to refine prognostication in patients with PanNET.
The evolution of genetic research over the past two decades has greatly improved the understanding of pheochromocytomas and paragangliomas. It is now accepted that more than one third of pheochromocytoma and paragangliomas arise in the context of syndromic disease, usually hereditary. The genetic profile of these tumors also has important prognostic implications which may help guide treatment. Accompanying the changing molecular landscape is the development of new immunohistochemical markers. Initially used in assisting with diagnosis, immunohistochemical markers have now become an important adjunct to screening programs for inherited conditions and subsequently as prognostic markers. The accessibility and efficiency of immunohistochemistry bring pathologists to the forefront in triaging patients based on tumor genotype-phenotype. In this review, we provide an update on the role of immunohistochemistry in the diagnosis of pheochromocytomas and paragangliomas, as an adjunct to assessment for hereditary disease and finally as a potential tool to assist risk stratification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.