Secretory phospholipases A2 (sPLA2) exert proinflammatory actions through lipid mediators. These enzymes have been found to be elevated in many inflammatory disorders such as rheumatoid arthritis, sepsis, and atherosclerosis. The aim of this study was to evaluate the effect of harpalycin 2 (Har2), an isoflavone isolated from Harpalyce brasiliana Benth., in the enzymatic, edematogenic, and myotoxic activities of sPLA2 from Bothrops pirajai, Crotalus durissus terrificus, Apis mellifera, and Naja naja venoms. Har2 inhibits all sPLA2 tested. PrTX-III (B. pirajai venom) was inhibited at about 58.7%, Cdt F15 (C. d. terrificus venom) at 78.8%, Apis (from bee venom) at 87.7%, and Naja (N. naja venom) at 88.1%. Edema induced by exogenous sPLA2 administration performed in mice paws showed significant inhibition by Har2 at the initial step. In addition, Har2 also inhibited the myotoxic activity of these sPLA2s. In order to understand how Har2 interacts with these enzymes, docking calculations were made, indicating that the residues His48 and Asp49 in the active site of these enzymes interacted powerfully with Har2 through hydrogen bonds. These data pointed to a possible anti-inflammatory activity of Har2 through sPLA2 inhibition.
In this work we have characterized the action of the naringin, a flavonoid found in grapefruit and known for its various pharmacological effects, which include antioxidant, blood lipid lowering and anticancer activity, on the structure and biochemical activities of a secretory phospholipase A (sPLA2) from Crotalus durissus cascavella, an important protein involved in the releasinge of arachidonic acid in phospholipid membranes. sPLA2 was incubated with naringin (mol:mol) at 37 °C and a discrete reduction in the UV scanning signal and a modification of the circular dichroism spectra were observed after treatment with naringin, suggesting modifications of the secondary structure of the protein. This flavonoid was able to decrease enzymatic activity and some pharmacological effects, such as myonecrosis, platelet aggregation, and neurotoxic activity caused by sPLA2, however, the inflammatory effect was not affected by naringin. In addition, small angle X-ray scattering (SAXS) data were collected for sPLA2 and naringin-treated sPLA2 to evaluate possible modifications of the protein structure. These structural investigations have shown that sPLA2 is an elongated dimer in solution and after treatment with naringin a conformational change in the dimeric configuration was observed. Our results suggest that structural modification may be correlated with the loss of enzymatic activity and alterations in pharmacological properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.