HIV-associated neurocognitive disorders (HANDs) affect a large part of HIV-infected patients, despite highly active antiretroviral therapy. HANDs occur in the absence of a direct infection of neurons. Nevertheless, viral proteins (e.g., Tat) are capable to cause neuronal dysfunction via oxidative stress, but the cellular pathways leading to HANDs are not yet fully defined. Here, we investigated the effects of Tat on Nrf2-mediated antioxidant response and system x expression in U373 human astroglial cells. Moreover, the effect of Tat-producing astrocytes on neuronal cell viability was assessed using SH-SY5Y cells as a culture model. We demonstrated that Tat produced by astrocytes was able to induce Nrf2 activation and system x expression in astrocytes, thus reducing cell viability of co-cultured neuronal cells. Furthermore, sulfasalazine, a specific system x inhibitor, was able to reduce extracellular glutamate and to prevent the reduction of neuronal viability, thus demonstrating that the neurotoxic effect was dependent on an increased glutamate release through the transporter. Our findings provide evidence of the involvement of astroglial Nrf2/system x pathway in the neurotoxicity induced by HIV-1 Tat protein, thereby suggesting how astrocytes may exacerbate neurodegeneration through the conversion of an antioxidant response to excitotoxicity.
Background Meloidae (blister beetles) are known to synthetize cantharidin (CA), a toxic and defensive terpene mainly stored in male accessory glands (MAG) and emitted outward through reflex-bleeding. Recent progresses in understanding CA biosynthesis and production organ(s) in Meloidae have been made, but the way in which self-protection is achieved from the hazardous accumulation and release of CA in blister beetles has been experimentally neglected. To provide hints on this pending question, a comparative de novo assembly transcriptomic approach was performed by targeting two tissues where CA is largely accumulated and regularly circulates in Meloidae: the male reproductive tract (MRT) and the haemolymph. Differential gene expression profiles in these tissues were examined in two blister beetle species, Lydus trimaculatus (Fabricius, 1775) (tribe Lyttini) and Mylabris variabilis (Pallas, 1781) (tribe Mylabrini). Upregulated transcripts were compared between the two species to identify conserved genes possibly involved in CA detoxification and transport. Results Based on our results, we hypothesize that, to avoid auto-intoxication, ABC, MFS or other solute transporters might sequester purported glycosylated CA precursors into MAG, and lipocalins could bind CA and mitigate its reactivity when released into the haemolymph during the autohaemorrhaging response. We also found an over-representation in haemolymph of protein-domains related to coagulation and integument repairing mechanisms that likely reflects the need to limit fluid loss during reflex-bleeding. Conclusions The de novo assembled transcriptomes of L. trimaculatus and M. variabilis here provided represent valuable genetic resources to further explore the mechanisms employed to cope with toxicity of CA in blister beetle tissues. These, if revealed, might help conceiving safe and effective drug-delivery approaches to enhance the use of CA in medicine.
In the field of research for designing and preparing innovative nanostructured systems, these systems are able to reveal the presence of heavy metals in water samples, and can efficiently and selectively interact with them, allowing for future applications in the field of water remediation. We investigated the electronic and molecular structure, as well as the morphology, of silver nanoparticles stabilized by mixed biocompatible ligands (the amino acid L-cysteine and the organic molecule citrate) in the presence of cadmium and arsenic ions. The molecular, electronic, and local structure at the ligands/silver nanoparticles interface was probed by the complementary synchrotron radiation-induced techniques (SR-XPS, NEXAFS and XAS). The optical absorption (in the UV-Vis range) of the nanosystem was investigated in the presence of Cd(II) and As(III) and the observed behavior suggested a selective interaction with cadmium. In addition, the toxicological profile of the innovative nanosystem was assessed in vitro using a human epithelial cell line HEK293T. We analyzed the viability of the cells treated with silver nanoparticles, as well as the activation of antioxidant response.
The Trans-Activator of Transcription (Tat) of Human Immunodeficiency Virus (HIV-1) is involved in virus replication and infection and can promote oxidative stress in human astroglial cells. In response, host cells activate transcription of antioxidant genes, including a subunit of System Xc− cystine/glutamate antiporter which, in turn, can trigger glutamate-mediated excitotoxicity. Here, we present data on the efficacy of bovine Lactoferrin (bLf), both in its native (Nat-bLf) and iron-saturated (Holo-bLf) forms, in counteracting oxidative stress in U373 human astroglial cells constitutively expressing the viral protein (U373-Tat). Our results show that, dependent on iron saturation, both Nat-bLf and Holo-bLf can boost host antioxidant response by up-regulating System Xc− and the cell iron exporter Ferroportin via the Nuclear factor erythroid 2-related factor (Nrf2) pathway, thus reducing Reactive Oxygen Species (ROS)-mediated lipid peroxidation and DNA damage in astrocytes. In U373-Tat cells, both forms of bLf restore the physiological internalization of Transferrin (Tf) Receptor 1, the molecular gate for Tf-bound iron uptake. The involvement of astrocytic antioxidant response in Tat-mediated neurotoxicity was evaluated in co-cultures of U373-Tat with human neuronal SH-SY5Y cells. The results show that the Holo-bLf exacerbates Tat-induced excitotoxicity on SH-SY5Y, which is directly dependent on System-Xc− upregulation, thus highlighting the mechanistic role of iron in the biological activities of the glycoprotein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.