In rodents, whisker-related patterns of neuronal architecture are present at the level of the brainstem trigeminal nuclei, the ventrobasal thalamus and the somatosensory cortex. In 1970, Woolsey & van der Loos described neuronal clusters in layer (L) 4 of the mouse somatosensory cortex that mirror the topography of the whisker pad on the animal's muzzle. These cell clusters were named 'barrels' and it is now established that each cortical barrel represents a principal whisker on the contralateral side of the face in a one-to-one relationship (Woolsey & van der Loos, 1970;Welker, 1976;Wallace, 1987;Agmon & Connors, 1991; for a review see Jones & Diamond, 1995). The columnar organisation and receptive field properties of these neurones appear to be comparatively simple. This should facilitate elucidation of cortical signal flow at the cellular level. Afferent nerve fibres from the thalamic 'relay nuclei' terminate in L4 of the sensory cortices (
Local inhibitory circuits are thought to shape neuronal information processing in the central nervous system, but it remains unclear how specific properties of inhibitory neuronal interactions translate into behavioral performance. In the olfactory bulb, inhibition of mitral/tufted cells via granule cells may contribute to odor discrimination behavior by refining neuronal representations of odors. Here we show that selective deletion of the AMPA receptor subunit GluA2 in granule cells boosted synaptic Ca(2+) influx, increasing inhibition of mitral cells. On a behavioral level, discrimination of similar odor mixtures was accelerated while leaving learning and memory unaffected. In contrast, selective removal of NMDA receptors in granule cells slowed discrimination of similar odors. Our results demonstrate that inhibition of mitral cells controlled by granule cell glutamate receptors results in fast and accurate discrimination of similar odors. Thus, spatiotemporally defined molecular perturbations of olfactory bulb granule cells directly link stimulus similarity, neuronal processing time, and discrimination behavior to synaptic inhibition.
We generated mouse mutants with targeted AMPA receptor (AMPAR) GluR-B subunit alleles, functionally expressed at different levels and deficient in Q/R-site editing. All mutant lines had increased AMPAR calcium permeabilities in pyramidal neurons, and one showed elevated macroscopic conductances of these channels. The AMPAR-mediated calcium influx induced NMDA-receptor-independent long-term potentiation (LTP) in hippocampal pyramidal cell connections. Calcium-triggered neuronal death was not observed, but mutants had mild to severe neurological dysfunctions, including epilepsy and deficits in dendritic architecture. The seizure-prone phenotype correlated with an increase in the macroscopic conductance, as independently revealed by the effect of a transgene for a Q/R-site-altered GluR-B subunit. Thus, changes in GluR-B gene expression and Q/R site editing can affect critical architectural and functional aspects of excitatory principal neurons.
Cortical columns are the functional units of the neocortex that are particularly prominent in the “barrel” field of the somatosensory cortex. Here we describe the morphology of two classes of synaptically coupled excitatory neurons in layer 4 of the barrel cortex, spiny stellate, and star pyramidal cells, respectively. Within a single barrel, their somata tend to be organized in clusters. The dendritic arbors are largely confined to layer 4, except for the distal part of the apical dendrite of star pyramidal neurons that extends into layer 2/3. In contrast, the axon of both types of neurons spans the cortex from layer 1 to layer 6. The most prominent axonal projections are those to layers 4 and 2/3 where they are largely restricted to a single cortical column. In layers 5 and 6, a small fraction of axon collaterals projects also across cortical columns. Consistent with the dense axonal projection to layers 4 and 2/3, the total number and density of boutons per unit axonal length was also highest there. Electron microscopy combined with GABA postimmunogold labeling revealed that most (>90%) of the synaptic contacts were established on dendritic spines and shafts of excitatory neurons in layers 4 and 2/3.The largely columnar organization of dendrites and axons of both cell types, combined with the preferential and dense projections within cortical layers 4 and 2/3, suggests that spiny stellate and star pyramidal neurons of layer 4 serve to amplify thalamic input and relay excitation vertically within a single cortical column.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.