The variations of breast cancer mortality rates from place to place reflect both underlying differences in breast cancer prevalence and differences in diagnosis and treatment that affect the risk of death. This article examines the role of access to health care in explaining the variation of late-stage diagnosis of breast cancer. We use cancer registry data for the state of Illinois by zip code to investigate spatial variation in late diagnosis. Geographic information systems and spatial analysis methods are used to create detailed measures of spatial access to health care such as convenience of visiting primary care physicians and travel time from the nearest mammography facility. The effects of spatial access, in combination with the influences of socioeconomic factors, on late-stage breast cancer diagnosis are assessed using statistical methods. The results suggest that for breast cancer, poor geographical access to primary health care significantly increases the risk of late diagnosis for persons living outside the city of Chicago. Disadvantaged population groups including those with low income and racial and ethnic minorities tend to experience high rates of late diagnosis. In Illinois, poor spatial access to primary health care is more strongly associated with late diagnosis than is spatial access to mammography. This suggests the importance of primary care physicians as gatekeepers in early breast cancer detection.
The health risks of As exposure due to the installation of millions of shallow tubewells in the Bengal Basin are known, but fecal contamination of shallow aquifers has not systematically been examined. This could be a source of concern in densely populated areas with poor sanitation because the hydraulic travel time from surface water bodies to shallow wells that are low in As was previously shown to be considerably shorter than for shallow wells that are high in As. In this study, 125 tubewells 6−36 m deep were sampled in duplicate for 18 months to quantify the presence of the fecal indicator Escherichia coli. On any given month, E. coli was detected at levels exceeding 1 most probable number per 100 mL in 19−64% of all shallow tubewells, with a higher proportion typically following periods of heavy rainfall. The frequency of E. coli detection averaged over a year was found to increase with population surrounding a well and decrease with the As content of a well, most likely because of downward transport of E. coli associated with local recharge. The health implications of higher fecal contamination of shallow tubewells, to which millions of households in Bangladesh have switched in order to reduce their exposure to As, need to be evaluated.
Ponds receiving latrine effluents may serve as sources of fecal contamination to shallow aquifers tapped by millions of tube-wells in Bangladesh. To test this hypothesis, transects of monitoring wells radiating away from four ponds were installed in a shallow sandy aquifer underlying a densely populated village and monitored for 14 months. Two of the ponds extended to medium sand. Another pond was sited within silty sand and the last in silt. The fecal indicator bacterium E. coli was rarely detected along the transects during the dry season and was only detected near the ponds extending to medium sand up to 7 m away during the monsoon. A log-linear decline in E. coli and Bacteroidales concentrations with distance along the transects in the early monsoon indicates that ponds excavated in medium sand were the likely source of contamination. Spatial removal rates ranged from 0.5-1.3 log10/m. After the ponds were artificially filled with groundwater to simulate the impact of a rain storm, E. coli levels increased near a pond recently excavated in medium sand, but no others. These observations show that adjacent sediment grain-size and how recently a pond was excavated influence how much fecal contamination ponds receiving latrine effluents contribute to neighboring groundwater.
This study reports on implementation of the CommunityRx system, a population health innovation that promoted clinic-community linkages via: a youth workforce (MAPSCorps) that conducted an annual community resource census; Community Health Information Specialists (CHIS) who supported cross-sector resource navigation; and a health information technology (HIT) for prescribing community resources. Between 2012–14, MAPSCorps identified 19,589 public-serving places in the 106mi2 implementation region. CHIS used these data to generate an inventory of nearly 15,000 health-promoting resources. The HIT platform was integrated with 3 electronic health record (EHR) systems at 33 clinical sites to map 37 prevalent health and wellness conditions to community resources; 253,479 personalized HealtheRx “prescriptions” were generated for approximately 113,000 participants. Participants found the HealtheRx very useful (83%); 19% went to a place they learned about from the HealtheRx. This study demonstrates the feasibility of using HIT and workforce innovation to bridge the gap between clinical and other health-promoting sectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.