Machado-Joseph disease, also known as spinocerebellar ataxia type 3, is the most common of the dominantly inherited ataxias worldwide and is characterized by mutant ataxin-3 misfolding, intracellular accumulation of aggregates and neuronal degeneration. Here we investigated the implication of autophagy, the major pathway for organelle and protein turnover, in the accumulation of mutant ataxin-3 aggregates and neurodegeneration found in Machado-Joseph disease and we assessed whether specific stimulation of this pathway could mitigate the disease. Using tissue from patients with Machado-Joseph disease, transgenic mice and a lentiviral-based rat model, we found an abnormal expression of endogenous autophagic markers, accumulation of autophagosomes and decreased levels of beclin-1, a crucial protein in the early nucleation step of autophagy. Lentiviral vector-mediated overexpression of beclin-1 led to stimulation of autophagic flux, mutant ataxin-3 clearance and overall neuroprotective effects in neuronal cultures and in a lentiviral-based rat model of Machado-Joseph disease. These data demonstrate that autophagy is a key degradation pathway, with beclin-1 playing a significant role in alleviating Machado-Joseph disease pathogenesis.
Perturbations in neuronal protein homeostasis likely contribute to disease pathogenesis in polyglutamine (polyQ) neurodegenerative disorders. Here we provide evidence that the co-chaperone and ubiquitin ligase, CHIP (C-terminus of Hsp70-interacting protein), is a central component to the homeostatic mechanisms countering toxic polyQ proteins in the brain. Genetic reduction or elimination of CHIP accelerates disease in transgenic mice expressing polyQ-expanded ataxin-3, the disease protein in Spinocerebellar Ataxia Type 3 (SCA3). In parallel, CHIP reduction markedly increases the level of ataxin-3 microaggregates, which partition in the soluble fraction of brain lysates yet are resistant to dissociation with denaturing detergent, and which precede the appearance of inclusions. The level of microaggregates in the CNS, but not of ataxin-3 monomer, correlates with disease severity. Additional cell-based studies suggest that either of two quality control ubiquitin ligases, CHIP or E4B, can reduce steady state levels of expanded, but not wild-type, ataxin-3. Our results support an aggregation model of polyQ disease pathogenesis in which ataxin-3 microaggregates are a neurotoxic species, and suggest that enhancing CHIP activity is a possible route to therapy for SCA3 and other polyQ diseases.
Machado Joseph disease also called spinocerebellar ataxia type 3 (MJD/SCA3) is a hereditary and neurodegenerative movement disorder caused by ataxin-3 with a polyglutamine expansion (mutant ataxin-3). Neuronal loss in MJD/SCA3 is associated with a mutant ataxin-3 toxic fragment. Defining mutant ataxin-3 proteolytic site(s) could facilitate the identification of the corresponding enzyme(s). Previously, we reported a mutant ataxin-3 mjd1a fragment in brain of transgenic mice (Q71) that contained epitopes C-terminal to amino acid 220. In this study, we generated and characterized neuroblastoma cells and transgenic mice expressing mutant ataxin-3 mjd1a lacking amino acids 190-220 (deltaQ71). Less deltaQ71 than Q71 fragments were detected in the cell but not mouse model. The transgenic mice developed an MJD/SCA3-like phenotype and their brain homogenates had a fragment containing epitopes C-terminal to amino acid 220. Our results support the toxic fragment hypothesis and narrow the mutant ataxin-3 cleavage site to the N-terminus of amino acid 190.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.