All groups showed some level of toxicity. Amongst the main solutions, chlorhexidine presented less cytotoxic potential. EDTA was the least cytotoxic of the auxiliary irrigant solutions, and the association of these two solutions showed the lowest toxicity potential amongst all groups.
The role of superoxide dismutase manganese dependent enzyme (SOD2) in colorectal cancer is presently insufficiently understood. Some studies suggest that high SOD2 levels found in cancer tissues are associated with cancer progression. However, thus far, the role of colorectal cancer superoxide-hydrogen peroxide imbalance has not yet been studied. Thus, in order to address this gap in extant literature, we performed an in vitro analysis using HT-29 colorectal cell line exposed to paraquat, which generates high superoxide levels, and porphyrin, a SOD2 mimic molecule. The effect of these drugs on colorectal cancer cell response to oxaliplatin was evaluated. At 0.1 μM concentration, both drugs exhibited cytotoxic and antiproliferative effect on colorectal cancer cells. However, this effect was more pronounced in cells exposed to paraquat. Paraquat also augmented the oxaliplatin cytotoxic and antiproliferative effects by increasing the number of apoptosis events, thus causing the cell cycle arrest in the S and M/G2 phases. The treatments were also able to differentially modulate genes related to apoptosis, cell proliferation and antioxidant enzyme system. However, the effects were highly variable and the results obtained were inconclusive. Nonetheless, our findings support the hypothesis that imbalance caused by increased hydrogen peroxide levels could be beneficial to cancer cell biology. Therefore, the use of therapeutic strategies to decrease hydrogen peroxide levels mainly during oxaliplatin chemotherapy could be clinically important to the outcomes of colorectal cancer treatment.
Antipsychotic drugs, such as haloperidol and risperidone, are used in long-term treatment of psychiatric patients and thus increase the risk of obesity and other metabolic dysfunctions. Available evidence suggests that these drugs have pro-inflammatory effect, which contributes to the establishment of endocrine disturbances. However, results yielded by extant studies are inconsistent. Therefore, in this work, we tested the in vitro effects of different high concentrations of haloperidol and risperidone on the activation of isolated macrophages (RAW 264.7 cell line). The results indicated that macrophages were activated by both drugs. In addition, the activation involved an increase in nitric oxide levels and apoptosis events by modulation of caspases 8 and 3 levels and a decrease of the Bcl-2/BAX gene expression ratio. Cells treated with haloperidol and risperidone also presented higher concentrations of inflammatory cytokines (IL-1β, IL-6, TNFα) and low levels of IL-6 anti-inflammatory cytokine in a dose-dependent manner. Despite the limitation of cell line studies based solely on macrophages cells, we suggest that antipsychotic drugs could potentially exacerbate inflammatory processes in peripheral tissues (blood and fat). The continued activation of macrophages could contribute to the development of obesity and other endocrine disturbances caused by the use of antipsychotic drugs.
The pastes varied in their ability to induce cytotoxicity, genotoxicity and oxidative stress. In general, Guedes-Pinto, Maxitrol and neomycin sulphate + bacitracin pastes exhibited better biocompatibility in vitro.
Methotrexate (MTX) is a folic acid antagonist used in high doses as an anti-cancer treatment and in low doses for the treatment of some autoimmune diseases. MTX use has been linked to oxidative imbalance, which may cause multi-organ toxicities that can be attenuated by antioxidant supplementation. Despite the oxidative effect of MTX, the influence of antioxidant gene polymorphisms on MTX toxicity is not well studied. Therefore, we analyzed here whether a genetic imbalance of the manganese-dependent superoxide dismutase (SOD2) gene could have some impact on the MTX cytotoxic response. An in vitro study using human peripheral blood mononuclear cells (PBMCs) obtained from carriers with different Ala16Val-SOD2 genotypes (AA, VV and AV) was carried out, and the effect on cell viability and proliferation was analyzed, as well as the effect on oxidative, inflammatory and apoptotic markers. AA-PBMCs that present higher SOD2 efficiencies were more resistance to high MTX doses (10 and 100 µM) than were the VV and AV genotypes. Both lipoperoxidation and ROS levels increased significantly in PBMCs exposed to MTX independent of Ala16Val-SOD2 genotypes, whereas increased protein carbonylation was observed only in PBMCs from V allele carriers. The AA-PBMCs exposed to MTX showed decreasing SOD2 activity, but a concomitant up regulation of the SOD2 gene was observed. A significant increase in glutathione peroxidase (GPX) levels was observed in all PBMCs exposed to MTX. However, this effect was more intense in AA-PBMCs. Caspase-8 and -3 levels were increased in cells exposed to MTX, but the modulation of these genes, as well as that of the Bax and Bcl-2 genes involved in the apoptosis pathway, presented a modulation that was dependent on the SOD2 genotype. MTX at a concentration of 10 µM also increased inflammatory cytokines (IL-1β, IL-6, TNFα and Igγ) and decreased the level of IL-10 anti-inflammatory cytokine, independent of SOD2 genetic background. The results suggest that potential pharmacogenetic effect on the cytotoxic response to MTX due differential redox status of cells carriers different SOD2 genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.