We report a Becker muscular dystrophy (BMD) family with one 5-year-old affected patient and a 69-year-old asymptomatic grandfather. Dystrophin gene multiplex polymerase chain reaction and multiplex ligation-dependant probe amplification analysis showed that both males carried an in-frame deletion of exons 45-55. Segregation analysis revealed two additional asymptomatic boys in this family. Our finding supports previous predictions that exons 45-55 are the optimal multiexon skipping target in antisense gene therapy to transform the severe Duchenne muscular dystrophy into the milder BMD, or even asymptomatic, phenotype.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by mutations in the dystrophin gene and is characterized by muscle degeneration and death. DMD affects males; females being asymptomatic carriers of mutations. However, some of them manifest symptoms due to a translocation between X chromosome and an autosome or to a heterozygous mutation leading to inactivation of most of their normal X chromosome. Six symptomatic female carriers and two asymptomatic were analyzed by: I) Segregation of STRs-(CA)n and MLPA assays to detect a hemizygous alteration, and II) X chromosome inactivation pattern to uncover the reason for symptoms in these females. The symptomatic females shared mild but progressive muscular weakness and increased serum creatin kinase (CK) levels. Levels of dystrophin protein were below normal or absent in many fibers. Segregation of STRs-(CA)n revealed hemizygous patterns in three patients, which were confirmed by MLPA. In addition, this analysis showed a duplication in another patient. X chromosome inactivation assay revealed a skewed X inactivation pattern in the symptomatic females and a random inactivation pattern in the asymptomatic ones. Our results support the hypothesis that the DMD phenotype in female carriers of a dystrophin mutation has a direct correlation with a skewed X-chromosome inactivation pattern.
Analyses of deletions in the dystrophin gene and of cognitive status were performed on patients with Duchenne (DMD) or Becker (BMD) muscular dystrophy in order to find a correlation between both features. Molecular study by multiplex and simplex PCR of dystrophin exons led to the identification of 51 deletions in 126 unrelated patients. Most of them were frameshift, in full agreement with severe clinical symptoms, three patients with a BMD-like phenotype had in-frame mutations. Deletions were localized with reference to the different dystrophin isoform sequences and were clustered in two main areas, 5' and central+ 3' end of the gene. Cognitive abilities were tested in 47 out of 51 patients with identified mutations, 23 of them being mentally impaired. Comparison of molecular and neuropsychological features showed that deletions localized in central and 3' parts of the gene (18 out of 23) are preferentially associated with mental impairment. Fourteen of them were found in the regulatory and coding sequences for the three CNS specific carboxy terminal isoforms. Therefore, though mutations with variable locations may lead to cognitive impairment, our results show that deletions in the distal portion of the gene are basically related to mental retardation.
Our results emphasize the usefulness of a combined methodology that includes segregation of polymorphisms, FISH, and heteroduplex/sequence analyses for detection of gross and small DNA rearrangements in familial and sporadic RB. Identification of mutations in sporadic cases is important for risk-assessment in patients' relatives. The degree of penetrance in the inheritance of RB not only depends on the occurrence of the second mutation in the RB1 gene but also on the extent of inactivation of the first mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.