The production of rapid tools for plastic molding, sheet metal forming, and blanking has always been a critical and important goal for applied research, and a very large number of alternative methods have been proposed over the decades for their production. Among these methods, the use of extrusion-based additive manufacturing (EAM), such as fused filament fabrication (FFF) or similar technologies, has not been frequently considered and needs to be explored extensively. EAM is generally considered a low-cost, low-quality, low-performance class of AM and not suited to produce real functional parts, but only for aesthetical prototypes. However, the capabilities of EAM technologies have greatly evolved and now it is possible to extrude a wide range of materials such as polymeric materials including both the low strength polymeric materials (such as nylon or PLA) and the high strength polymeric materials (such as PEI and PEEK), metals (such as tool steel), and even ceramics (such as zirconia). Starting from an extensive literature review, the purpose of the present paper is to further demonstrate the potential applicability and versatility of EAM as a rapid tool manufacturing technology for different applications in shearing, bending, deep drawing, and injection molding.
Injection molding is a widespread manufacturing technology for mass production of polymeric parts. Conventionally, fused polymers are injected at high pressure in a metallic mold. This tool is typically characterized by high manufacturing costs and times, making the injection molding process not affordable for small batches or prototypal applications. Additive Manufacturing represents a practical solution to cut down tooling costs and times of molds and inserts. In this work, FDM (Fused Deposition Technology) has been considered as candidate technology to produce polymeric inserts for injection molding. Considering the commercially available filaments for FDM, a PEI (Polyetherimide) grade has been selected as tooling material for the injection of a part made of Polypropylene. The PEI grade represents a good compromise between manufacturing costs and thermo-mechanical properties required for the application. The PEI grade has been characterized with DSC (Differential Scanning Calorimetry), DMA (Dynamical Mechanical Analysis) and compression tests. The data gathered were used to set up 2D simplified thermo-mechanical finite element analyses, simulating the response of the PEI inserts subjected to repeated injection molding cycles. The simulations confirmed that the PEI grade is a good candidate tooling material but the progressive tool heating could lead to prolonged cooling time of the Polypropylene part. Finally, some PEI inserts were 3D printed with FDM and tested in a real injection molding machine injecting POM. In total, 20 POM parts have been injected correctly without relevant damaging of the PEI inserts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.