The ESA's Soil Moisture and Ocean Salinity (SMOS) mission is the first satellite devoted to measure the Earth's surface soil moisture. It has a spatial resolution of km and a 3-day revisit. In this paper, a downscaling algorithm is presented as a new ability to obtain multiresolution soil moisture estimates from SMOS using visible-to-infrared remotely sensed observations. This algorithm is applied to combine 2 years of SMOS and MODIS Terra/Aqua data over the Iberian Peninsula into fine-scale (1 km) soil moisture estimates. Disaggregated soil moisture maps are compared to 0-5 cm ground-based measurements from the REMEDHUS network. Three matching strategies are employed: 1) a comparison at 40 km spatial resolution is undertaken to ensure SMOS sensitivity is preserved in the downscaled maps; 2) the spatiotemporal correlation of downscaled maps is analyzed through comparison with point-scale observations; and 3) high-resolution maps and ground-based observations are aggregated per land-use to identify spatial patterns related with vegetation activity and soil type. Results show that the downscaling method improves the spatial representation of SMOS coarse soil moisture estimates while maintaining temporal correlation and root mean squared differences with ground-based measurements. The dynamic range of in situ soil moisture measurements is reproduced in the highresolution maps, including stations with different mean soil wetness conditions. Downscaled maps capture the soil moisture dynamics of general land uses, with the exception of irrigated crops. This evaluation study supports the use of this downscaling approach to enhance the spatial resolution of SMOS observations over semi-arid regions such as the Iberian Peninsula.
This paper aims to present and assess the quality of seven years (2011–2017) of 25 km nine-day Soil Moisture and Ocean Salinity (SMOS) Sea Surface Salinity (SSS) objectively analyzed maps in the Arctic and sub-Arctic oceans ( 50 ∘ N– 90 ∘ N). The SMOS SSS maps presented in this work are an improved version of the preliminary three-year dataset generated and freely distributed by the Barcelona Expert Center. In this new version, a time-dependent bias correction has been applied to mitigate the seasonal bias that affected the previous SSS maps. An extensive database of in situ data (Argo floats and thermosalinograph measurements) has been used for assessing the accuracy of this product. The standard deviation of the difference between the new SMOS SSS maps and Argo SSS ranges from 0.25 and 0.35. The major features of the inter-annual SSS variations observed by the thermosalinographs are also captured by the SMOS SSS maps. However, the validation in some regions of the Arctic Ocean has not been feasible because of the lack of in situ data. In those regions, qualitative comparisons with SSS provided by models and the remotely sensed SSS provided by Aquarius and SMAP have been performed. Despite the differences between SMOS and SMAP, both datasets show consistent SSS variations with respect to the model and the river discharge in situ data, but present a larger dynamic range than that of the model. This result suggests that, in those regions, the use of the remotely sensed SSS may help to improve the models.
Abstract. After more than 10 years in orbit, the Soil Moisture and Ocean Salinity (SMOS) European mission is still a unique, high-quality instrument for providing soil moisture over land and sea surface salinity (SSS) over the oceans. At the Barcelona Expert Center (BEC), a new reprocessing of 9 years (2011–2019) of global SMOS SSS maps has been generated. This work presents the algorithms used in the generation of BEC global SMOS SSS product v2.0, as well as an extensive quality assessment. Three SMOS SSS fields are distributed: a high-resolution level-3 product (with DOI https://doi.org/10.20350/digitalCSIC/12601, Olmedo et al., 2020a) consisting of binned SSS in 9 d maps at 0.25∘×0.25∘; low-resolution level-3 SSS computed from the binned salinity by applying a smoothing spatial window of 50 km radius; and level-4 SSS (with DOI https://doi.org/10.20350/digitalCSIC/12600, Olmedo et al., 2020b) consisting of daily 0.05∘×0.05∘ maps that are computed by multifractal fusion with sea surface temperature maps. For the validation of BEC SSS products, we have applied a battery of tests aimed at the assessment of quality of the products both in value and in structure. First, we have compared BEC SSS products with near-to-surface salinity measurements provided by Argo floats. Secondly, we have assessed the geophysical consistency of the products characterized by singularity analysis, and the effective spatial resolutions are also estimated by means of power density spectra and singularity density spectra. Finally, we have calculated full maps of SSS errors by using correlated triple collocation. We have compared the performance of the BEC SMOS product with other satellite SSS and reanalysis products. The main outcomes of this quality assessment are as follows. (i) The bias between BEC SMOS and Argo salinity is lower than 0.02 psu at a global scale, while the standard deviation of their difference is lower than 0.34 and 0.27 psu for the high- and low-resolution level-3 fields (respectively) and 0.24 psu for the level-4 salinity. (ii) The effective spatial resolution is around 40 km for all SSS products and regions. (iii) The results from triple collocation show the BEC SMOS level-4 product as the product with the lowest estimated salinity error in most of the global ocean and the BEC SMOS high-resolution level-3 as the one with the lowest estimated salinity error in regions strongly affected by rainfall and continental freshwater discharge.
1SMOS brightness temperature images and calibrated visibilities are related by the so-called G-matrix. Due to 2 the incomplete sampling at some spatial frequencies, sharp transitions in the brightness temperature scenes generate 3 a Gibbs-like contamination ringing and spread sidelobes. In the current SMOS image reconstruction strategy, a Blackman window is applied to the Fourier components of the brightness temperatures to diminish the amplitude of 5 artifacts such as ripples, and other Gibbs-like effects. In this work, a novel image reconstruction algorithm focused 6 on the reduction of Gibbs-like contamination in brightness temperature images is proposed. It is based on sampling 7 the brightness temperature images at the nodal points, that is, at those points at which the oscillating interference 14 This represents a crucial improvement in brightness temperature quality, which will translate in an enhancement of 15 the retrieved geophysical parameters, especially the sea surface salinity. 16 Index Terms 17
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.