The environmental pollutant 3-MeSO(2)-DDE [2-(3-methylsulfonyl-4-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethene] is an adrenocortical toxicant in mice, specifically in the glucocorticoid-producing zona fasciculata, due to a cytochrome P450 11B1 (CYP11B1)-catalysed bioactivation and formation of covalently bound protein adducts. o,p'-DDD [2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane] is toxic and inhibits steroidogenesis in the human adrenal cortex after bioactivation by unidentified CYPs, but does not exert any toxic effects on the mouse adrenal. As a step towards determining in vitro/in vivo relationships for the CYP-catalysed binding and toxicity of 3-MeSO(2)-DDE and o,p'-DDD, we have investigated the irreversible protein binding of these two toxicants in the murine adrenocortical cell line Y-1. The irreversible binding of 3-MeSO(2)-DDE previously demonstrated in vivo was successfully reproduced and could be inhibited by the CYP-inhibitors etomidate, ketoconazole and metyrapone. Surprisingly, o,p'-DDD reached similar levels of binding as 3-MeSO(2)-DDE. The binding of o,p'-DDD was sensitive to etomidate and ketoconazole, but not to metyrapone. Moreover, GSH depletion increased the binding of 3-MeSO(2)-DDE, but not of o,p'-DDD, indicating an important role of GSH conjugation in the detoxification of the 3-MeSO(2)-DDE-derived reactive metabolite. In addition, the specificity of CYP11B1 in activating 3-MeSO(2)-DDE was investigated using structurally analogous compounds. None of the analogues produced histopathological lesions in the mouse adrenal in vivo following a single i.p. injection of 100 mg/kg body weight, but two of the compounds were able to decrease the irreversible binding of 3-MeSO(2)-DDE to Y-1 cells. These results indicate that the bioactivation of 3-MeSO(2)-DDE by CYP11B1 is highly structure-dependent. In conclusion, both 3-MeSO(2)-DDE and o,p'-DDD bind irreversibly to Y-1 cells despite differences in binding and adrenotoxicity in mice in vivo. This reveals a notable in vitro/in vivo discrepancy, the contributing factors of which remain unexplained. We consider the Y-1 cell line as appropriate for studies of the cellular mechanisms behind the adrenocortical toxicity of these substances.
ABSTRACT:2,6-Dichlorophenyl methylsulfone (2,6-diClPh-MeSO 2 ) is a potent olfactory toxicant reported to induce endoplasmic reticulum (ER) stress, caspase activation, and extensive cell death in mice. The aim of the present study was to examine cytochrome P450 (P450)-dependent bioactivation, nonprotein sulfhydryl (NP-SH) levels, and early ultrastructural changes in mouse olfactory mucosa following an i.p. injection of 2,6-diClPh-MeSO 2 (32 mg/kg). A high covalent binding of 2,6-diClPh-14 C-MeSO 2 in olfactory mucosa S9 fraction was observed, and the CYP2A5/CYP2G1 substrates coumarin and dichlobenil significantly decreased the binding, whereas the CYP2E1 substrate chlorzoxazone had no effects. An increased bioactivation was detected in liver microsomes of mice pretreated with pyrazole, known to induce CYP2A4, 2A5, 2E1, and 2J, and addition of chlorzoxazone reduced this binding. 2,6-DiClPh-14 CMeSO 2 showed a marked covalent binding to microsomes of recombinant yeast cells expressing mouse CYP2A5 or human CYP2A6 compared with wild type. One and 4 h after a single injection of 2,6-diClPh-MeSO 2 , the NP-SH levels in the olfactory mucosa were significantly reduced compared with control, whereas there was no change in the liver. Ultrastructural studies revealed that ER, mitochondria, and secretory granules in nonneuronal cells were early targets 1 h after injection. We propose that lesions induced by 2,6-diClPh-MeSO 2 in the mouse olfactory mucosa were initiated by a P450-mediated bioactivation in the Bowman's glands and depletion of NP-SH levels, leading to disruption of ion homeostasis, organelle swelling, and cell death. The high expression of CYP2A5 in the olfactory mucosa is suggested to play a key role for the tissue-specific toxicity induced by 2,6-diClPh-MeSO 2 .The olfactory mucosa harbors a wide variety of xenobiotic-metabolizing enzymes including several cytochrome P450 (P450) forms; the most predominant are CYP2A3/5/10/13 and CYP2G1 (Ding and Kaminsky, 2003;Piras et al., 2003;Ling et al., 2004). The P450-mediated metabolism is generally regarded as a protection mechanism, and the high expression of drug-metabolizing P450s is most likely related to the clearance of odorants and other airborne chemicals. These enzymes may also protect the central nervous system against inhaled toxicants. P450 enzymes are, however, also central for the metabolic activation of foreign compounds into reactive, toxic metabolites, and olfactory P450s have been suggested to play a key role in the tissue-selective toxicity of drugs and chemicals in this tissue (Gaskell, 1990;Dahl and Hadley, 1991;Reed, 1993;Brittebo, 1997;Ding and Kaminsky, 2003). A decreased olfactory toxicity has been demonstrated after pretreatment with various P450 inhibitors (Brandt et al., 1990;Genter et al., 1994;Bahrami et al., 2000b). Many olfactory toxicants and carcinogens, including dichlobenil, coumarin, hexamethylphosphoramide, and the tobacco-specific 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone are preferentially bioactivated to reactive interme...
The pharmacokinetics of the adrenocorticolytic drug candidate 3-Methylsulphonyl-DDE (3-MeSO2-DDE) and the anticancer drug o,p'-DDD (mitotane) were studied in Göttingen minipigs. The animals were given 3-MeSO2-DDE or o,p'-DDD as single oral doses (30 mg/kg). Concentrations in plasma and subcutaneous fat were measured by gas chromatography at different time points during 180 days. Maximal plasma concentrations appeared within 24 h for both compounds, but were about 2 times higher for 3-MeSO2DDE. o,p'-DDD plasma concentrations declined rapidly to low levels during 4 days. 3-MeSO2-DDE also decreased rapidly, but remained at high concentrations throughout the study. In fat, 3-MeSO2-DDE reached about 25-fold higher levels than o,p'-DDD at 30 days, and both substances were eliminated slowly from this tissue. 3-MeSO2-DDE liver concentrations were about 18-fold higher than those in plasma at 180 days. In contrast, o,p'-DDD liver and plasma levels were about equal at 180 days. o,p'-DDD had roughly 45 times larger CL/F than 3-MeSO2-DDE, confirming that the elimination of this compound was more rapid. Both compounds were characterised by their localisation and retention in fat tissue, and the individual size of the fat stores clearly determined the plasma concentrations. It is concluded that although 3-MeSO2-DDE is an interesting candidate for therapeutic use due to its potential characteristics to specifically target adrenocortical tumour cells the slow elimination of the compound might make it challenging to design appropriate dosage regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.