The lifetime of induction motors can be significantly extended by installing diagnostic systems for monitoring their operating conditions. In particular, detecting broken bar failures in motors is important for avoiding the risk of short circuits or other accidents with serious consequences. In the literature, many approaches have been proposed for motor fault detection; however, additional generalized methods based on local and statistical analysis could provide a low-complexity and feasible solution in this field of research. The proposed work presents a methodology for detecting one or two broken rotor bars using the sums and differences histograms (SDH) and machine learning classifiers in this context. From the SDH computed in one phase of the motor’s current, nine texture features are calculated for different displacements. Then, all features are used to train two classifiers and to find the best displacements for faults and health identification in the induction motors. A final experimental evaluation considering the best displacements shows an accuracy of 98.16% for the homogeneity feature and a few signal samples used in a decision tree classifier. Additionally, a polynomial regression curve validates the use of 50 samples to obtain an accuracy of 88.15%, whereas the highest performance is achieved for 250 samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.