Viral infection is a common threat to prokaryotic and eukaryotic life, which has resulted in the evolution of a myriad of antiviral systems. Some of these eukaryotic systems are thought to have evolved from prokaryotic antiphage proteins, with which they may display sequence and structural homology. Here, we show that homologs of recently discovered antiphage systems are widespread in eukaryotes. We demonstrate that such homologs can retain a function in immunity by unveiling that eukaryotic proteins of the anti-transposon piRNA pathway display domain homology with the antiphage system Mokosh. We further utilise this conservation to discover novel human antiviral genes related to the Eleos and Lamassu prokaryotic systems. We propose that comparative immunology across domains of life can be leveraged to discover immune genes in eukaryotes.
Leptospira interrogans are bacteria that can infect all vertebrates and are responsible for leptospirosis, a neglected zoonosis. Some hosts, such as humans, are susceptible to the disease, whereas mice are resistant and get chronically colonized. Although leptospires escape recognition by some immune receptors, they activate the NOD-like receptor pyrin 3–inflammasome and trigger IL-1β secretion. Classically, IL-1β secretion is associated with lytic inflammatory cell death called pyroptosis, resulting from cytosolic LPS binding to inflammatory caspases, such as caspase 11. Interestingly, we showed that L. interrogans and Leptospira biflexa do not trigger cell death in either murine, human, hamster, or bovine macrophages, escaping both pyroptosis and apoptosis. We showed, in murine cells, that the mild IL-1β secretion induced by leptospires occurred through nonlytic caspase 8–dependent gasdermin D pore formation and not through activation of caspase 11/noncanonical inflammasome. Strikingly, we demonstrated a potent antagonistic effect of pathogenic L. interrogans and their atypical LPS on spontaneous and Escherichia coli LPS-induced cell death. Indeed, LPS of L. interrogans efficiently prevents caspase 11 dimerization and subsequent massive gasdermin D cleavage. Finally, we showed that pyroptosis escape by leptospires prevents massive IL-1β release, and we consistently found no major role of IL-1R in controlling experimental leptospirosis in vivo. Overall, to our knowledge, our findings described a novel mechanism by which leptospires dampen inflammation, thus potentially contributing to their stealthiness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.