In this paper, we use Generative Adversarial Networks (GANs) to synthesize high-quality retinal images along with the corresponding semantic label-maps, instead of real images during training of a segmentation network. Different from other previous proposals, we employ a two-step approach: first, a progressively growing GAN is trained to generate the semantic label-maps, which describes the blood vessel structure (i.e., the vasculature); second, an image-to-image translation approach is used to obtain realistic retinal images from the generated vasculature. The adoption of a two-stage process simplifies the generation task, so that the network training requires fewer images with consequent lower memory usage. Moreover, learning is effective, and with only a handful of training samples, our approach generates realistic high-resolution images, which can be successfully used to enlarge small available datasets. Comparable results were obtained by employing only synthetic images in place of real data during training. The practical viability of the proposed approach was demonstrated on two well-established benchmark sets for retinal vessel segmentation—both containing a very small number of training samples—obtaining better performance with respect to state-of-the-art techniques.
Eye-tracking can offer a novel clinical practice and a non-invasive tool to detect neuropathological syndromes. In this paper, we show some analysis on data obtained from the visual sequential search test. Indeed, such a test can be used to evaluate the capacity of looking at objects in a specific order, and its successful execution requires the optimization of the perceptual resources of foveal and extrafoveal vision. The main objective of this work is to detect if some patterns can be found within the data, to discern among people with chronic pain, extrapyramidal patients and healthy controls. We employed statistical tests to evaluate differences among groups, considering three novel indicators: blinking rate, average blinking duration and maximum pupil size variation. Additionally, to divide the three patient groups based on scan-path images—which appear very noisy and all similar to each other—we applied deep learning techniques to embed them into a larger transformed space. We then applied a clustering approach to correctly detect and classify the three cohorts. Preliminary experiments show promising results.
In recent years, the Ribosome profiling technique (Ribo–seq) has emerged as a powerful method for globally monitoring the translation process in vivo at single nucleotide resolution. Based on deep sequencing of mRNA fragments, Ribo–seq allows to obtain profiles that reflect the time spent by ribosomes in translating each part of an open reading frame. Unfortunately, the profiles produced by this method can vary significantly in different experimental setups, being characterized by a poor reproducibility. To address this problem, we have employed a statistical method for the identification of highly reproducible Ribo–seq profiles, which was tested on a set of E. coli genes. State-of-the-art artificial neural network models have been used to validate the quality of the produced sequences. Moreover, new insights into the dynamics of ribosome translation have been provided through a statistical analysis on the obtained sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.