Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults in the western world. Although promising new therapies for this incurable disease are being tested in clinical trials, the therapeutic relevance of metabolic rewiring in chronic lymphocytic leukemia (CLL) is poorly understood. The aim of this study was to identify targetable metabolic differences in primary CLL lymphocytes by the use of Dasatinib. Dasatinib is a multi-tyrosine kinase inhibitor used to treat chronic myelogenous leukemia (CML) and is being tested in clinical trials for several cancers including CLL. This drug has been shown to be beneficial to CML patients suffering from diabetes by reducing their glucose plasma levels. In keeping with this previous observation, we report that Dasatinib induced glucose use while reducing lactate production, suggesting that this tyrosine kinase inhibitor decreases aerobic glycolysis and shifts glucose use in primary CLL lymphocytes. Our results suggest that primary CLL lymphocytes (independently of traditional prognostic factors) can be stratified in two subsets by their sensitivity to Dasatinib in vitro. Increased glucose use induced by Dasatinib or by inhibition of mitochondrial respiration was not sufficient to sustain survival and ATP levels in CLL samples sensitive to Dasatinib. The two subsets of primary CLL lymphocytes are characterized as well by a differential dependency on mitochondrial respiration and the use of anabolic or catabolic processes to cope with induced metabolic/energetic stress. Differential metabolic reprogramming between subsets is supported by the contrasting effect on the survival of Dasatinib treated CLL lymphocytes with pharmacological inhibition of two master metabolic regulators (mTorc1 and AMPK) as well as induced autophagy. Alternative metabolic organization between subsets is further supported by the differential basal expression (freshly purified lymphocytes) of active AMPK, regulators of glucose metabolism and modulators of AKT signaling. The contrasting metabolic features revealed by our strategy could be used to metabolically target CLL lymphocyte subsets creating new therapeutic windows for this disease for mTORC1 or AMPK inhibitors. Indeed, we report that Metformin, a drug used to treat diabetes was selectively cytotoxic to Dasatinib sensitive samples. Ultimately, we suggest that a similar strategy could be applied to other cancer types by using Dasatinib and/or relevant tyrosine kinase inhibitors.
Drug repositioning refers to new uses for existing drugs outside the scope of the original medical indications. This approach fastens the process of drug development allowing finding effective drugs with reduced side effects and lower costs. Colorectal cancer (CRC) is often diagnosed at advanced stages, when the probability of chemotherapy resistance is higher. Triple negative breast cancer (TNBC) is the most aggressive type of breast cancer, highly metastatic and difficult to treat. For both tumor types, available treatments are generally associated to severe side effects. In our work, we explored the effect of combining metformin and propranolol, two repositioned drugs, in both tumor types. We demonstrate that treatment affects viability, epithelial-mesenchymal transition and migratory potential of CRC cells as we described before for TNBC. We show that combined treatment affects different steps leading to metastasis in TNBC. Moreover, combined treatment is also effective preventing the development of 5-FU resistant CRC. Our data suggest that combination of metformin and propranolol could be useful as a putative adjuvant treatment for both TNBC and CRC and an alternative for chemo-resistant CRC, providing a low-cost alternative therapy without associated toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.