Because HRV and BPV response is different when induced by static or dynamic exercise, differences in the autonomic activity can be advised. Instead of the vagal withdrawal and sympathetic augmentation observed during dynamic exercise, the increase in the overall HRV and the MF component during static exercise suggest an increased activity of both autonomic branches.
Brain magnetic resonance imaging segmentation is accomplished in this work by applying nonparametric density estimation, using the mean shift algorithm in the joint spatial-range domain. The quality of the class boundaries is improved by including an edge confidence map, that represents the confidence of truly being in the presence of a border between adjacent regions; an adjacency graph is then constructed with the labeled regions, and analyzed and pruned to merge adjacent regions. In order to assign image regions to a cerebral tissue type, a spatial normalization between image data and standard probability maps is carried out, so that for each structure a maximum a posteriori probability criterion is applied. The method was applied to synthetic and real images, keeping all parameters constant throughout the process for each type of data. The combination of region segmentation and edge detection proved to be a robust technique, as adequate clusters were automatically identified, regardless of the noise level and bias. In a comparison with reference segmentations, average Tanimoto indexes of 0.90-0.99 were obtained for synthetic data and of 0.59-0.99 for real data, considering gray matter, white matter, and background.
The 3D tortuosity determined in several brain areas is proposed as a new morphological biomarker (BM) to be considered in early detection of Alzheimer’s disease (AD). It is measured using the sum of angles method and it has proven to be sensitive to anatomical changes that appear in gray and white matter and temporal and parietal lobes during mild cognitive impairment (MCI). Statistical analysis showed significant differences (p<0.05) between tortuosity indices determined for healthy controls (HC) vs. MCI and HC vs. AD in most of the analyzed structures. Other clinically used BMs have also been incorporated in the analysis: beta-amyloid and tau protein CSF and plasma concentrations, as well as other image-extracted parameters. A classification strategy using random forest (RF) algorithms was implemented to discriminate between three samples of the studied populations, selected from the ADNI database. Classification rates considering only image-extracted parameters show an increase of 9.17%, when tortuosity is incorporated. An enhancement of 1.67% is obtained when BMs measured from several modalities are combined with tortuosity.
We present a discrete compactness (DC) index, together with a classification scheme, based both on the size and shape features extracted from brain volumes, to determine different aging stages: healthy controls (HC), mild cognitive impairment (MCI), and Alzheimer's disease (AD). A set of 30 brain magnetic resonance imaging (MRI) volumes for each group was segmented and two indices were measured for several structures: three-dimensional DC and normalized volumes (NVs). The discrimination power of these indices was determined by means of the area under the curve (AUC) of the receiver operating characteristic, where the proposed compactness index showed an average AUC of 0.7 for HC versus MCI comparison, 0.9 for HC versus AD separation, and 0.75 for MCI versus AD groups. In all cases, this index outperformed the discrimination capability of the NV. Using selected features from the set of DC and NV measures, three support vector machines were optimized and validated for the pairwise separation of the three classes. Our analysis shows classification rates of up to 98.3% between HC and AD, 85% between HC and MCI, and 93.3% for MCI and AD separation. These results outperform those reported in the literature and demonstrate the viability of the proposed morphological indices to classify different aging stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.