Major advances have been made in identifying potential vaccine molecules for the control of fasciolosis in livestock but we have yet to reach the level of efficacy required for commercialisation. The pathogenesis of fasciolosis is associated with liver damage that is inflicted by migrating and feeding immature flukes as well as host inflammatory immune responses to parasite-secreted molecules and tissue damage alarm signals. Immune suppression/modulation by the parasites prevents the development of protective immune responses as evidenced by the lack of immunity observed in naturally and experimentally infected animals. In our opinion, future efforts need to focus on understanding how parasites invade and penetrate the tissues of their hosts and how they potentiate and control the ensuing immune responses, particularly in the first days of infection. Emerging ‘omics’ data employed in an unbiased approach are helping us understand liver fluke biology and, in parallel with new immunological data, to identify molecules that are essential to parasite development and accessible to vaccine-induced immune responses.
Several collagen subtypes have been identified in hyaline articular cartilage. The main and most abundant collagens are type II, IX and XI collagens. The minor and less abundant collagens are type III, IV, V, VI, X, XII, XIV, XVI, XXII, and XXVII collagens. All these collagens have been found to play a key role in healthy cartilage, regardless of whether they are more or less abundant. Additionally, an exhaustive evaluation of collagen fibrils in a repaired cartilage tissue after a chondral lesion is necessary to determine the quality of the repaired tissue and even whether or not this repaired tissue is considered hyaline cartilage. Therefore, this review aims to describe in depth all the collagen types found in the normal articular cartilage structure, and based on this, establish the parameters that allow one to consider a repaired cartilage tissue as a hyaline cartilage.
The expression of T regulatory cells (Foxp3), regulatory (interleukin [IL]-10 and transforming growth factor beta [TGF-β]) and proinflammatory (tumor necrosis factor alpha [TNF-α] and interleukin [IL]-1β) cytokines was quantified using real time polymerase chain reaction (qRT-PCR) in the liver of sheep during early stages of infection with Fasciola hepatica (1, 3, 9, and 18 days post-infection [dpi]). Portal fibrosis was also evaluated by Masson’s trichrome stain as well as the number of Foxp3+ cells by immunohistochemistry. Animals were divided into three groups: (a) group 1 was immunized with recombinant cathepsin L1 from F. hepatica (FhCL1) in Montanide adjuvant and infected; (b) group 2 was uniquely infected with F. hepatica; and (c) group 3 was the control group, unimmunized and uninfected. An overexpression of regulatory cytokines of groups 1 and 2 was found in all time points tested in comparison with group 3, particularly at 18 dpi. A significant increase of the number of Foxp3+ lymphocytes in groups 1 and 2 was found at 9 and 18 dpi relative to group 3. A progressive increase in portal fibrosis was found in groups 1 and 2 in comparison with group 3. In this regard, group 1 showed smaller areas of fibrosis than group 2. There was a significant positive correlation between Foxp3 and IL-10 expression (by immunohistochemistry and qRT-PCR) just as between portal fibrosis and TGF-β gene expression. The expression of proinflammatory cytokines increased gradually during the experience. These findings suggest the induction of a regulatory phenotype by the parasite that would allow its survival at early stages of the disease when it is more vulnerable.
Fasciola hepatica is a trematode parasite responsible for major economic losses in livestock production, and is also a food-borne zoonotic agent in developing rural regions. For years, the immunoregulatory mechanisms employed by the parasite have hampered efforts to develop a successful vaccine candidate. Given that a comprehensive understanding of the immune response to infection is needed, we investigated the gene expression changes in ovine hepatic lymph nodes after experimental infection with F. hepatica. Lymph nodes from uninfected and infected animals were processed for RNA sequencing (RNA-seq) at 16 weeks post-infection. Comparison of groups revealed 5,132 differentially-expressed genes (DEGs). An inhibition of pro-inflammatory pathways, which has previously been described during fasciolosis, was evident in our data. However, other signals previously identified in ruminant peripheral blood mononuclear cells (PBMC) or liver tissue, such as activation of TGF-β or apoptosis-related pathways were not detected. We found inhibition of some key immunological pathways, including natural killer (NK) cell activity and IgE-mediated signaling. These may point to additional some as yet unrecognized mechanisms employed by the parasite to evade the host immune response. Understanding these, and leveraging information from this and other omics studies, will be important for the development of future vaccine prototypes against this parasite.
Foxp3 regulatory T cells (Tregs) are now considered to play a key role in modulation of immune responses during parasitic helminth infections. Immunomodulation is a key factor in Fasciola hepatica infection; however, the distribution and role of Foxp3 Tregs cells have not been investigated in F. hepatica infected ruminants. The aim of this study was to evaluate the presence of Foxp3 Tregs in the liver and hepatic lymph nodes from experimentally infected sheep and goats during acute and chronic stages of infection. Three groups of goats (n=6) and three groups of sheep (n=6) were used in this study. Goats in groups 1-2 and sheep in groups 4-5 were orally infected with metacercarie of ovine origin. Groups 1 and 4 were killed during the acute stage of the infection, at nine days post infection (dpi); groups 2 and 5 were killed during the chronic stage, at 15 and19 weeks post infection respectively (wpi). Groups 3 (goats) and 6 (sheep) were left as uninfected controls. Fluke burdens and liver damage were assessed and the avidin-biotin-complex method was used for the immunohistochemical study. At nine dpi in acute hepatic lesions, the number of both Foxp3 and CD3 T lymphocytes increased significantly in goats and sheep. In the chronic stages of infection (15-19wpi), the number of Foxp3 and CD3 T lymphocytes were also significantly increased with respect to control livers, particularly in portal spaces with severely enlarged bile ducts (response to adult flukes) while the increase was lower in granulomas, chronic tracts and smaller portal spaces (response to tissue damage). Foxp3 Tregs were increased in the cortex of hepatic lymph nodes of sheep (chronic infection) and goats (acute and chronic infection). The estimated proportion of T cells which were Foxp3+ was significantly increased in the large bile ducts and hepatic lymph node cortex of chronically infected goats but not sheep. This first report of the expansion of Foxp3 Tregs in acute and chronic hepatic lesions in ruminants suggests that these cells may be involved in both parasite survival and modulation of hepatic damage. Future studies should be focused on the investigation of parasite molecules and cytokines involved in this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.