SummaryTrichomonas vaginalis , a human sexually transmitted protozoan, relies on adherence to the vaginal epithelium for colonization and maintenance of infection in the host. Thus, adherence molecules play a fundamental role in the trichomonal infection. Here, we show the identification and characterization of a 120 kDa surface glycoprotein (AP120) induced by iron, which participates in cytoadherence. AP120 is synthesized by the parasite when grown in 250 m m m m M iron medium. Antibodies to AP120 and the electroeluted AP120 inhibited parasite adherence in a concentration-dependent manner, demonstrating its participation in cytoadherence. In addition, a protein of 130 kDa was detected on the surface of HeLa cells as the putative receptor for AP120. By peptide matrixassisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), the AP120 adhesin showed homology with a hydrogenosomal enzyme, the pyruvate:ferredoxin oxidoreductase (PFO) encoded by the pfoa gene. This homology was confirmed by immunoblot and indirect immunofluorescence assays with an antibody to the carboxyterminus region of the Entamoeba histolytica PFO. Reverse transcription polymerase chain reaction (RT-PCR) assays showed that a pfoa -like gene was better transcribed in trichomonads grown in iron-rich medium. In conclusion, the homology of AP120 to PFO suggests that this novel adhesin induced by iron could be an example of moonlighting protein in T. vaginalis .
Exercise training performed at the maximal fat oxidation intensity (FMT) stands out as a potential treatment of overweight and obesity. This work is a meta-analysis of randomized clinical trials of studies about the effect of FMT on fat mass and maximal oxygen consumption using PubMed, SCOPUS, EBSCOhost, and ScienceDirect as databases. Two independent reviewers selected 11 trials from 356 publications identified by the following keywords: fatmax, lipoxmax, maximal fat oxidation, peak of fat oxidation, physical training, physical exercise, body fat (BF), fat mass, overweight, and obesity. The risk of bias was assessed following the Cochrane Guidelines. The pooled mean difference was computed for each outcome with the random-effects model and the inverse-variance method. The meta-analysis was performed with the RevMan software v 5.3, and the heterogeneity across studies by the I2. The statistical significance was accepted at p < 0.05. Results showed that the FMT reduced body weight (MD = −4.30 kg, p < 0.01, I2 = 0%), fat mass (MD = −4.03 kg, p < 0.01, I2 = 0%), and waist circumference (MD = −3.34 cm, p < 0.01). Fat-free mass remains unchanged (MD = 0.08 kg, p = 0.85), but maximal oxygen consumption increased (MD = 2.96 mL∙kg−1∙min−1, p < 0.01, I2 = 0%). We conclude that FMT at short and medium-term (eight to twenty weeks) reduces body weight and BF, increasing cardiovascular fitness in low physical fitness people with obesity.
The GSTT1 and GSTM1 genes are key molecules in cellular detoxification. Null variants in these genes are associated with increase susceptibility to developing different types of cancers. The aim of this study was to determine the prevalence of GSTT1 and GSTM1 null genotypes in Mestizo and Amerindian individuals from the Northwestern region of Mexico, and to compare them with those reported worldwide. GSTT1 and GSTM1 null variants were genotyped by multiplex PCR in 211 Mestizos and 211 Amerindian individuals. Studies reporting on frequency of GSTT1 and GSTM1 null variants worldwide were identified by a PubMed search and their geographic distribution were analyzed. We found no significant differences in the frequency of the null genotype for GSTT1 and GSM1 genes between Mestizo and Amerindian individuals. Worldwide frequencies of the GSTT1 and GSTM1 null genotypes ranges from 0.10 to 0.51, and from 0.11 to 0.67, respectively. Interestingly, in most countries the frequency of the GSTT1 null genotype is common or frequent (76%), whereas the frequency of the GSMT1 null genotype is very frequent or extremely frequent (86%). Thus, ethnic-dependent differences in the prevalence of GSTT1 and GSTM1 null variants may influence the effect of environmental carcinogens in cancer risk.
Peroxisome proliferator-activated receptors (PPARs) play roles in glucose and lipid metabolism regulation. Pro12Ala PPAR-γ2 and +294T/C PPAR-δ have been associated with dyslipidemia, hyperglycemia and high body mass index (BMI). We compared metabolic traits and determined associations with Pro12Ala PPAR-γ2 or +294T/C PPAR-δ polymorphism among teenagers from different ethnicity. Four hundred and twelve samples with previous biochemical and biometric measurements were used. Genomic DNA from peripheral blood was extracted and analyzed by end-point PCR for Pro12Ala PPAR-γ2. The +294T/C PPAR-δ PCR product was also digested with Bsl I. Two genotype groups were formed: major allele homozygous and minor allele carriers. Pro12Ala PPAR-γ2 G minor allele frequencies were: 10% in Mestizo-1, 19% in Mestizo-2, 23% in Tarahumara, 12% in Mennonite, and 17% in the total studied population. The +294T/C PPAR-δ C minor allele frequencies were: 18% in Mestizo-1, 20% in Mestizo-2, 6% in Tarahumara, 13% in Mennonite, and 12% in the total studied population. Teenagers with PPAR-γ2 G allele showed a greater risk for either high waist/height ratio or low high-density lipoprotein; and, also had lower total cholesterol. Whereas, PPAR-γ2 G allele showed lower overweight/obesity phenotype (BMI Z-score) frequency, PPAR-δ C allele was a risk factor for it. Metabolic traits were associated with both PPAR polymorphisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.