The progressive neuropathological damage seen in Parkinson's disease (PD) is thought to be related to the spreading of aggregated forms of α‐synuclein. Clearance of extracellular α‐synuclein released by degenerating neurons may be therefore a key mechanism to control the concentration of α‐synuclein in the extracellular space. Several molecular chaperones control misfolded protein accumulation in the extracellular compartment. Among these, clusterin, a glycoprotein associated with Alzheimer's disease, binds α‐synuclein aggregated species and is present in Lewy bodies, intraneuronal aggregates mainly composed by fibrillary α‐synuclein. In this study, using murine primary astrocytes with clusterin genetic deletion, human‐induced pluripotent stem cell (iPSC)‐derived astrocytes with clusterin silencing and two animal models relevant for PD we explore how clusterin affects the clearance of α‐synuclein aggregates by astrocytes. Our findings showed that astrocytes take up α‐synuclein preformed fibrils (pffs) through dynamin‐dependent endocytosis and that clusterin levels are modulated in the culture media of cells upon α‐synuclein pffs exposure. Specifically, we found that clusterin interacts with α‐synuclein pffs in the extracellular compartment and the clusterin/α‐synuclein complex can be internalized by astrocytes. Mechanistically, using clusterin knock‐out primary astrocytes and clusterin knock‐down hiPSC‐derived astrocytes we observed that clusterin limits the uptake of α‐synuclein pffs by cells. Interestingly, we detected increased levels of clusterin in the adeno‐associated virus‐ and the α‐synuclein pffs‐ injected mouse model, suggesting a crucial role of this chaperone in the pathogenesis of PD. Overall, our observations indicate that clusterin can limit the uptake of extracellular α‐synuclein aggregates by astrocytes and, hence, contribute to the spreading of Parkinson pathology.
The dopamine (DA) D3 receptor (D3R) plays a pivotal role in the control of several functions, including motor activity, rewarding and motivating behavior and several aspects of cognitive functions. Recently, it has been reported that the D3R is also involved in the regulation of neuronal development, in promoting structural plasticity and in triggering key intracellular events with neuroprotective potential. A new role for D3R-dependent neurotransmission has thus been proposed both in preserving DA neuron homeostasis in physiological conditions and in preventing pathological alterations that may lead to neurodegeneration. Interestingly, there is evidence that nicotinic acetylcholine receptors (nAChR) located on DA neurons also provide neurotrophic support to DA neurons, an effect requiring functional D3R and suggesting the existence of a positive cross-talk between these receptor systems. Increasing evidence suggests that, as with the majority of G protein-coupled receptors (GPCR), the D3R directly interacts with other receptors to form new receptor heteromers with unique functional and pharmacological properties. Among them, we recently identified a receptor heteromer containing the nAChR and the D3R as the molecular effector of nicotine-mediated neurotrophic effects. This review summarizes the functional and pharmacological characteristics of D3R, including the capability to form active heteromers as pharmacological targets for specific neurodegenerative disorders. In particular, the molecular and functional features of the D3R-nAChR heteromer will be especially discussed since it may represent a possible key etiologic effector for DA-related pathologies, such as Parkinson’s disease (PD), and a target for drug design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.