Photoreduction by amines of oxoisoaporphine dyes occurs via a stepwise mechanism of electron-proton-electron transfer that leads to the metastable N-hydrogen oxoisoaporphine anion. During photoreduction that occurs from the triplet manifold of the oxoisoaporphine, a radical ion A(-)(*), a neutral-hydrogenated radical A-NH(*), and the metastable ion A-NH(-) of the oxoisoaporphine are formed. We present time-resolved spectroscopic data and quantum mechanical semiempirical PM3 and ZINDO/S results for the transient species formed during the flash photolysis of oxoisoaporphines in the presence of amines. These calculations reproduce adequately the experimental spectra of the triplet-triplet absorption near 450 nm, and that of neutral hydrogenated radical of the studied oxoisoaporphines centered at 390 nm. A transient absorption observed near 490 nm, for all of the studied systems, was explained by considering the formation of radical ion pair between the radical anion of the oxoisoaporphine, A(-)(*), and the radical cation of the amine, whose ZINDO/S calculated spectra generate the strongest transition near the experimentally observed absorption maximum at 490 nm, supporting the formation of a radical ion pair complex as the first step of the photoreduction.
Photoreduction of 5,6-dimethoxy-, 5-methoxy- and 2,3-dihydro-7H-dibenzo[de,h]quinolin-7-one (A) by tertiary amines in oxygen-free solutions generates long-lived semi-reduced metastable photoproducts, A-NH(-), via a stepwise electron-proton-electron transfer mechanism with a limit quantum yield of about 0.1 at high TEA concentrations. These metastable photoproducts revert thermally to the initial oxoisoaporphine nearly quantitatively in the presence or absence of oxygen. We present spectrophotometric, NMR and UV-vis data for the metastable photoproducts. The spectrophotometric results and PM3 and ZINDO/S calculations support the proposed mechanism for the photoreduction of the oxoisoaporphines.
[reaction: see text] Photoreduction of oxoisoaporphine dyes occurs via a stepwise mechanism of electron-proton-electron transfer that leads to the N-hydrogen oxoisoaporphine anion. When triethylamine, TEA, was used as the electron donor in anaerobic conditions, 1-diethylaminobutadiene, DEAB, was one of the oxidation products of TEA, among diethylamine and acetaldehyde. DEAB was identified by (1)H NMR and GC-MS experiments by comparison with the authentic 1-diethylaminobutadiene. This is the first report of a butadienyl derivative formed in the dye-sensitized photooxidation of TEA. In addition, isotopic exchange experiments with TEA-d(15) and D(2)O show that the hydrogens at carbon-2 and carbon-4 of the butadienyl moiety are exchangeable. The observed isotopic exchange pattern could be explained by the head-to-tail coupling of an N,N-diethylvinylamine intermediate that exchanges hydrogens at the C-beta via the enammonium ion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.